Cytoplasmic dynein is required for poleward chromosome movement during mitosis in Drosophila embryos (original) (raw)

References

  1. Paschal, B. M. & Vallee, R. B. Retrograde transport by the microtubule-associated protein MAP 1C. Nature 330, 181–183 (1987).
    Article CAS Google Scholar
  2. Karki, S. & Holzbaur, E. L. Cytoplasmic dynein and dynactin in cell division and intracellular transport. Curr. Opin. Cell Biol. 11, 45–53 (1999).
    Article CAS Google Scholar
  3. Sharp, D. J. et al. Functional coordination of three mitotic motors in drosophila embryos. Mol. Biol. Cell 11, 241– 253 (2000).
    Article CAS Google Scholar
  4. Saunders, W. S., Koshland, D., Eshel, D., Gibbons, I. R. & Hoyt, M. A. Saccharomyces cerevisiae kinesin- and dynein-related proteins required for anaphase chromosome segregation. J. Cell Biol. 128, 617– 624 (1995).
    Article CAS Google Scholar
  5. Pfarr, C. M. et al. Cytoplasmic dynein is localized to kinetochores during mitosis . Nature 345, 263–265 (1990).
    Article CAS Google Scholar
  6. Steuer, E. R., Wordeman, L., Schroer, T. A. & Sheetz, M. P. Localization of cytoplasmic dynein to mitotic spindles and kinetochores. Nature 345, 266–268 ( 1990).
    Article CAS Google Scholar
  7. Wordeman, L., Steuer, E. R., Sheetz, M. P. & Mitchison, T. Chemical subdomains within the kinetochore domain of isolated CHO mitotic chromosomes. J. Cell Biol. 114, 285– 294 (1991).
    Article CAS Google Scholar
  8. Echeverri, C. J., Paschal, B. M., Vaughan, K. T. & Vallee, R. B. Molecular characterization of the 50-kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organization during mitosis. J. Cell Biol. 132, 617– 633 (1996).
    Article CAS Google Scholar
  9. Starr, D. A., Williams, B. C., Hays, T. S. & Goldberg, M. L. Zw10 helps recruit dynactin and dynein to the kinetochore. J. Cell Biol. 142, 763–774 ( 1998).
    Article CAS Google Scholar
  10. Karki, S., LaMonte, B. & Holzbaur, E. L. Characterization of the p22 subunit of dynactin reveals the localization of cytoplasmic dynein and dynactin to the midbody of dividing cells. J. Cell Biol. 142, 1023– 1034 (1998) [published erratum J. Cell Biol. 143, 560; 1998].
    Article CAS Google Scholar
  11. McNeill, P. A. & Berns, M. W. Chromosome behavior after laser microirradiation of a single kinetochore in mitotic PtK2 cells . J. Cell Biol. 88, 543– 553 (1981).
    Article CAS Google Scholar
  12. Rieder, C. L. & Salmon, E. D. Motile kinetochores and polar ejection forces dictate chromosome position on the vertebrate mitotic spindle. J. Cell Biol. 124, 223– 233 (1994).
    Article CAS Google Scholar
  13. Bowman, A. B. et al. Drosophila roadblock and Chlamydomonas LC7: a conserved family of dynein-associated proteins involved in axonal transport, flagellar motility, and mitosis. J. Cell Biol. 146, 165–180 (1999).
    CAS PubMed PubMed Central Google Scholar
  14. Karess, R. E. & Glover, D.M. rough deal: a gene required for proper mitotic segregation in Drosophila. J. Cell Biol. 109, 2951–2961 (1989).
    Article CAS Google Scholar
  15. Williams, B. C., Karr, T. L., Montgomery, J. M. & Goldberg, M. L. The Drosophila l(1)zw10 gene product, required for accurate mitotic chromosome segregation, is redistributed at anaphase onset. J. Cell Biol. 118, 759– 773 (1992).
    Article CAS Google Scholar
  16. Williams, B. C., Gatti, M. & Goldberg, M. L. Bipolar spindle attachments affect redistributions of Zw10, a Drosophila centromere/kinetochore component required for accurate chromosome segregation. J. Cell Biol. 134, 1127–1140 (1996).
    Article CAS Google Scholar
  17. Yucel, J. K. et al. CENP-meta, an essential kinetochore kinesin required for the maintenance of metaphase chromosome alignment in Drosophila. J. Cell Biol. 150, 1–12 (2000).
    Article CAS Google Scholar
  18. Moore, D. P., Page, A. W., Tang, T. T., Kerrebrock, A. W. & Orr-Weaver, T. L. The cohesion protein MEI-S332 localizes to condensed meiotic and mitotic centromeres until sister chromatids separate. J. Cell Biol. 140, 1003–1012 (1998).
    Article CAS Google Scholar
  19. Sullivan, W. & Theurkauf, W. E. The cytoskeleton and morphogenesis of the early Drosophila embryo. Curr. Opin. Cell Biol. 7, 18–22 (1995).
    Article CAS Google Scholar
  20. Heald, R. et al. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 382, 420–425 (1996).
    Article CAS Google Scholar
  21. Robinson, J. T., Wojcik, E. J., Sanders, M. A., McGrail, M. & Hays, T. S. Cytoplasmic dynein is required for the nuclear attachment and migration of centrosomes during mitosis in Drosophila. J. Cell Biol. 146, 597–608 (1999).
    Article CAS Google Scholar
  22. Waters, J. C., Mitchison, T. J., Rieder, C. L. & Salmon, E. D. The kinetochore microtubule minus-end disassembly associated with poleward flux produces a force that can do work. Mol. Biol. Cell 7, 1547–1558 ( 1996).
    Article CAS Google Scholar
  23. Straight, A. F., Marshall, W. F., Sedat, J. W. & Murray, A. W. Mitosis in living budding yeast: anaphase A but no metaphase plate. Science 277, 574– 578 (1997).
    Article CAS Google Scholar
  24. Gorbsky, G. J., Chen, R. H. & Murray, A. W. Microinjection of antibody to Mad2 protein into mammalian cells in mitosis induces premature anaphase. J. Cell Biol. 141, 1193–1205 (1998).
    Article CAS Google Scholar
  25. Vaisberg, E. A., Koonce, M. P. & McIntosh, J. R. Cytoplasmic dynein plays a role in mammalian mitotic spindle formation. J. Cell Biol. 123, 849–858 (1993).
    Article CAS Google Scholar
  26. Savoian, M. S., Goldberg, M. L. & Rieder, C. L. The rate of poleward chromosome motion is attenuated in Drosophila zw10 and rod mutants. Nature Cell Biol. 2, 948–952 (2000).
    Article CAS Google Scholar
  27. Orozco, J. T. et al. Movement of motor and cargo along cilia. Nature 398, 674 (1999).
    Article CAS Google Scholar
  28. Signor, D. et al. Role of a class DHC1b dynein in retrograde transport of IFT motors and IFT raft particles along cilia, but not dendrites, in chemosensory neurons of living Caenorhabditis elegans. J. Cell Biol. 147, 519–530 ( 1999).
    Article CAS Google Scholar
  29. Skibbens, R. V., Skeen, V. P. & Salmon, E. D. Directional instability of kinetochore motility during chromosome congression and segregation in mitotic newt lung cells: a push-pull mechanism. J. Cell Biol. 122, 859–875 (1993).
    Article CAS Google Scholar
  30. Vernos, I. & Karsenti, E. in Dynamics of Cell Division (ed. Glover, S. A. E. a. D. M.) 97–123 (Oxford Univ. Press, 1998).
    Google Scholar
  31. Yen, T. J., Li, G., Schaar, B. T., Szilak, I. & Cleveland, D. W. CENP-E is a putative kinetochore motor that accumulates just before mitosis. Nature 359, 536–539 (1992).
    Article CAS Google Scholar
  32. Wood, K. W., Sakowicz, R., Goldstein, L. S. & Cleveland, D. W. CENP-E is a plus end-directed kinetochore motor required for metaphase chromosome alignment. Cell 91, 357– 366 (1997).
    Article CAS Google Scholar
  33. Desai, A., Verma, S., Mitchison, T. J. & Walczak, C. E. Kin I kinesins are microtubule-destabilizing enzymes. Cell 96, 69–78 (1999).
    Article CAS Google Scholar
  34. Lombillo, V. A., Nislow, C., Yen, T. J., Gelfand, V. I. & McIntosh, J. R. Antibodies to the kinesin motor domain and CENP-E inhibit microtubule depolymerization-dependent motion of chromosomes in vitro. J. Cell Biol. 128, 107–115 (1995).
    Article CAS Google Scholar
  35. Maney, T., Hunter, A. W., Wagenbach, M. & Wordeman, L. Mitotic centromere-associated kinesin is important for anaphase chromosome segregation. J. Cell Biol. 142, 787– 801 (1998).
    Article CAS Google Scholar
  36. Zhai, Y., Kronebusch, P. J. & Borisy, G. G. Kinetochore microtubule dynamics and the metaphase–anaphase transition. J. Cell Biol. 131, 721– 734 (1995).
    Article CAS Google Scholar
  37. Nicklas, R. B. A quantitative comparison of cellular motile systems. Cell Motil. 4, 1–5 (1984 ).
    Article CAS Google Scholar
  38. Foe, V. E. & Alberts, B. M. Studies of nuclear and cytoplasmic behaviour during the five mitotic cycles that precede gastrulation in Drosophila embryogenesis. J. Cell Sci. 61 , 31–70 (1983).
    CAS PubMed Google Scholar
  39. Signor, D., Wedaman, K. P., Rose, L. S. & Scholey, J. M. Two heteromeric kinesin complexes in chemosensory neurons and sensory cilia of Caenorhabditis elegans. Mol. Biol. Cell 10 , 345–360 (1999).
    Article CAS Google Scholar
  40. Sharp, D. J., Yu, K. R., Sisson, J. C., Sullivan, W. & Scholey, J. M. Antagonistic microtubule-sliding motors position mitotic centrosomes in Drosophila early embryos. Nature Cell Biol. 1, 51–54 (1999).
    Article CAS Google Scholar
  41. Francis-Lang, H., Minden, J., Sullivan, W. & Oegema, K. Live confocal analysis with fluorescently labeled proteins. Methods Mol. Biol. 122, 223–237 (1995).
    Google Scholar
  42. Sharp, D. J. et al. The bipolar kinesin, KLP61F, cross-links microtubules within interpolar microtubule bundles of Drosophila embryonic mitotic spindles . J. Cell Biol. 144, 125– 138 (1999).
    Article CAS Google Scholar

Download references