Dynamic binding of histone H1 to chromatin in living cells (original) (raw)

References

  1. Thoma, F. & Koller, T. Influence of histone H1 on chromatin structure. Cell 12, 101– 107 (1977).
    Article CAS Google Scholar
  2. Ramakrishnan, V. Histone H1 and chromatin higher order structure. Crit. Rev. Eukaryot. Gene Expr. 7, 215–230 ( 1997).
    Article CAS Google Scholar
  3. Thomas, J. O. Histone H1: location and role. Curr. Opin. Cell Biol. 11, 312–317 (1999).
    Article CAS Google Scholar
  4. Croston, G. E., Kerrigan, L. A., Lira, L. M., Marshak, D. R. & Kadonaga, J. T. Sequence-specific antirepression of histone H1-mediated inhibition of basal RNA polymerase II transcription. Science 251, 643–649 (1991).
    Article ADS CAS Google Scholar
  5. Zlatanova, J. & van Holde, K. Linker histones versus HMG1/2: a struggle for dominance? BioEssays 20, 588–588 (1998).
    Article Google Scholar
  6. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41– 45 (2000).
    Article ADS CAS Google Scholar
  7. Gunjan, A., Alexander, B. T., Sittman, D. B. & Brown, D. T. Effects of H1 histone variant overexpression on chromatin structure. J. Biol. Chem. 274, 37950–37956 (1999).
    Article CAS Google Scholar
  8. Gunjan, A. & Brown, D. T. Overproduction of histone H1 variants in vivo increases basal and induced activity of the mouse mammary tumor virus promoter. Nucleic Acids Res. 27, 3355– 3363 (1999).
    Article CAS Google Scholar
  9. Minc, E., Allory, Y., Worman, H. J., Courvalin, J.-C. & Buenida, B. Localization and phosphorylation of HP1 proteins during the cell cycle in mammalian cells. Chromosoma 108, 220–234 ( 1999).
    Article CAS Google Scholar
  10. Marshall, W. F. et al. Interphase chromosomes undergo constrained diffusional motion in living cells. Curr. Biol. 7, 930– 939 (1997).
    Article CAS Google Scholar
  11. Phair, R. D. & Misteli, T. High mobility of proteins in the mammalian cell nucleus. Nature 404, 604– 609 (2000).
    Article ADS CAS Google Scholar
  12. Houtsmuller, A. B. et al. Action of DNA repair endonuclease ERCC1/XPF in living cells. Science 284, 958–961 (1999).
    Article ADS CAS Google Scholar
  13. Struhl, K. Histoneacetylation and transcriptional regulatory mechanisms. Genes Dev. 12, 599–606 ( 1998).
    Article CAS Google Scholar
  14. Ura, K., Wolffe, A. P. & Hayers, J. J. Core histone acetylation does not block linker histone binding to a nucleosome including a Xenopus borealis 5S rRNA gene. J. Biol. Chem. 269, 27171–27174 (1994).
    CAS PubMed Google Scholar
  15. Krajewski, W. A. & Becker, P. B. Reconstitution of hyperacetylated, DNase I-sensitive chromatin characterized by high conformational flexibility of nucleosomal DNA. Proc. Natl Acad. Sci. 95, 1540–1545 (1998).
    Article ADS CAS Google Scholar
  16. Ridsdale, J. A., Hendzel, M. J., Delcuve, G. P. & Davie, J. R. Histone acetylation alters the capacity of the H1 histones to condense transcriptionally active/competent chromatin. J. Biol. Chem. 265, 5150–5156 (1990).
    CAS PubMed Google Scholar
  17. Juan, L.-J., Utley, R. T., Adams, C. C., Vettese-Dadey, M. & Workman, J. L. Differential repression of transcription factor binding by histone H1 is regulated by the core histone amino termini. EMBO J. 13, 6031–6040 (1994).
    Article CAS Google Scholar
  18. Bates, D. L., Butler, P. J., Pearson, E. C. & Thomas, J. O. Stability of the higher order structure of chicken erythrocyte chromatin in solution. Eur. J. Biochem. 119, 469– 476 (1981).
    Article CAS Google Scholar
  19. Caron, F. & Thomas, J. O. Exchange of histone H1 between chromatin segments. J. Mol. Biol. 146, 513 –537 (1981).
    Article CAS Google Scholar
  20. Louters, L. & Chalkley, R. Exchange of histones H1, H2A, and H2B in vivo. Biochemistry 24, 3080– 3085 (1985).
    Article CAS Google Scholar
  21. Wu, L. H., Kuehl, L. & Rechsteiner, M. Dynamic behavior of histone H1 microinjected into HeLa cells. J. Cell Biol. 103, 565– 574 (1986).
    Article Google Scholar
  22. Lu, M. J., Mpoke, S. S., Dadd, C. A. & Allis, C. D. Phosphorylated and dephosphorylated linker histone H1 reside in distinct chromatin domains in Tetrahymena macronuclei. Mol. Biol. Cell 6, 1077–1087 (1995).
    Article CAS Google Scholar
  23. Dou, Y., Mizzen, C. A., Abrams, M., Allis, C. D. & Gorovsky, M. A. Phosphorylation of linker histone H1 regulates gene expression in vivo by mimicking H1 removal. Mol. Cell 4, 641–647 ( 1999).
    Article CAS Google Scholar
  24. Grunstein, M. Histone acetylation in chromatin structure and transcription. Nature 389, 349–352 ( 1997).
    Article ADS CAS Google Scholar
  25. Berger, S. L. Gene activation by histone and factor acetyltransferases. Curr. Opin. Cell Biol. 11, 336–341 (1999).
    Article CAS Google Scholar
  26. Hebbes, T. R., Thorne, A. W. & Crane-Robinson, C. A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J. 7, 1395– 1402 (1988).
    Article CAS Google Scholar
  27. Bresnick, E. H., Bustin, M., Marsaud, V., Richard-Foy, H. & Hager, G. L. The transcriptionally-active MMTV promoter is depleted of histone H1. Nucleic Acids Res. 20, 273 –278 (1992).
    Article CAS Google Scholar
  28. Brown, D. T., Alexander, B. T. & Sittman, D. B. Differential effect of H1 variant overexpression on cell cycle progression and gene expression. Nucleic Acids Res. 24, 486–493 ( 1996).
    Article CAS Google Scholar
  29. Misteli, T. & Spector, D. L. Serine/threonine phosphatase 1 modulates the subnuclear distribution of pre-mRNA splicing factors. Mol. Biol. Cell 7, 1559–1572 (1996).
    Article CAS Google Scholar

Download references