Recognition memory: What are the roles of the perirhinal cortex and hippocampus? (original) (raw)

References

  1. Scoville, W. B. & Milner, B. Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psych. 20, 11–21 ( 1957).
    Article CAS Google Scholar
  2. Gaffan, D. & Murray, E. A. Monkeys (Macaca fascicularis ) with rhinal cortex ablations succeed in object discrimination learning despite 24-hr intertrial intervals and fail at matching to sample despite double sample presentations. Behav. Neurosci. 106, 30–38 (1992).
    Article CAS PubMed Google Scholar
  3. Meunier, M., Bachevalier, J., Mishkin, M. & Murray, E. A. Effects on visual recognition of combined and separate ablations of the entorhinal and perirhinal cortex in rhesus monkeys. J. Neurosci. 13, 5418–5432 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  4. Suzuki, W. A., Zola-Morgan, S., Squire, L. R. & Amaral, D. G. Lesions of the perirhinal and parahippocampal cortices in the monkey produce long-lasting memory impairment in the visual and tactual modalities. J. Neurosci. 13, 2430–2451 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  5. Mumby, D. G. & Pinel, J. P. J. Rhinal cortex lesions and object recognition in rats. Behav. Neurosci. 108, 11–18 (1994).
    Article CAS PubMed Google Scholar
  6. Alvarez, P., Zola-Morgan, S. & Squire, L. R. Damage limited to the hippocampal region produces long-lasting memory impairment in monkeys. J. Neurosci. 15, 3796–3807 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  7. Ennaceur, A., Neave, N. & Aggleton, J. P. Neurotoxic lesions of the perirhinal cortex do not mimic the behavioural effects of fornix transection in the rat. Behav. Brain Res. 80, 9–25 (1996).
    Article CAS PubMed Google Scholar
  8. Meunier, M., Hadfield, W., Bachevalier, J. & Murray, E. A. Effects of rhinal cortex lesions combined with hippocampectomy on visual recognition memory in rhesus monkeys. J. Neurophysiol. 75, 1190–1205 (1996).
    Article CAS PubMed Google Scholar
  9. Murray, E. A. & Mishkin, M. Object recognition and location memory in monkeys with excitotoxic lesions of the amygdala and hippocampus . J. Neurosci. 18, 6568– 6582 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  10. Aggleton, J. P. & Brown, M. W. Episodic memory, amnesia and the hippocampal–anterior thalamic axis. Behav. Brain Sci. 22, 425–489 ( 1999).A review of current evidence that the hippocampal-anterior thalamic system underlies episodic memory.
    Article CAS PubMed Google Scholar
  11. Beason-Held, L. L., Rosene, D. L., Killiany, R. J. & Moss, M. B. Hippocampal formation lesions produce memory impairment in the rhesus monkey . Hippocampus 9, 562–574 (1999).
    Article CAS PubMed Google Scholar
  12. Zola, S. M., Squire, L. R., Teng, E., Stefanacci, L., Buffalo, E. A. & Clark, R. E. Impaired recognition memory in monkeys after damage limited to the hippocampal region. J. Neurosci. 20, 451– 463 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  13. Mandler, G. Recognizing: the judgment of previous occurrence. Psychol. Rev. 87, 252–271 ( 1980).
    Article Google Scholar
  14. Haist, F. & Shimamura, A. P. On the relationship between recall and recognition memory. J. Exp. Psychol. Learn. Mem. Cogn. 18, 691–702 ( 1992).
    Article CAS PubMed Google Scholar
  15. Hirshman, E. & Master, S. Modeling the conscious correlates of recognition memory: reflections on the remember–know paradigm. Mem. Cogn. 25, 345–351 ( 1997). PubMed
    Article CAS Google Scholar
  16. Donaldson, W. The role of decision processes in remembering and knowing. Mem. Cogn. 26, 523–533 ( 1999).
    Google Scholar
  17. Jacoby, L. L. & Dallas, M. On the relationship between autobiographical memory and perceptual learning. J. Exp. Psychol. Gen. 3, 306–340 (1981). PubMed
    Article Google Scholar
  18. Gardiner, J. M. & Parkin, A. J. Attention and recollective experience in recognition memory. Mem. Cogn. 18, 579–583 (1990). PubMed
    Article CAS Google Scholar
  19. Brown, M. W., Wilson, F. A. W. & Riches, I. P. Neuronal evidence that inferomedial temporal cortex is more important than hippocampus in certain processes underlying recognition memory. Brain Res. 409, 158– 162 (1987).
    Article CAS PubMed Google Scholar
  20. Fahy, F. L., Riches, I. P. & Brown, M. W. Neuronal activity related to visual recognition memory: long-term memory and the encoding of recency and familiarity information in the primate anterior and medial inferior temporal and rhinal cortex. Exp. Brain Res. 96, 457–472 (1993).
    Article CAS PubMed Google Scholar
  21. Li, L., Miller, E. K. & Desimone, R. The representation of stimulus familiarity in anterior inferior temporal cortex. J. Neurophysiol. 69, 1918–1929 (1993).
    Article CAS PubMed Google Scholar
  22. Miller, E. K., Li, L. & Desimone, R. Activity of neurons in anterior inferior temporal cortex during a short-term memory task. J. Neurosci. 13, 1460–1478 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  23. Sobotka, S. & Ringo, J. L. Investigations of long-term recognition and association memory in unit responses from inferotemporal cortex. Exp. Brain Res. 96, 28–38 (1993).
    Article CAS PubMed Google Scholar
  24. Xiang, J. Z. & Brown, M. W. Differential neuronal encoding of novelty, familiarity and recency in regions of the anterior temporal lobe . Neuropharmacology 37, 657– 676 (1998).
    Article CAS PubMed Google Scholar
  25. Brown, M. W. Neuronal responses and recognition memory. Semin. Neurosci. 8, 23–32 (1996).
    Article Google Scholar
  26. Desimone, R. Neural mechanisms for visual memory and their role in attention. Proc. Natl Acad. Sci. USA 93, 13494– 13499 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  27. Eichenbaum, H., Schoenbaum, G., Young, B. & Bunsey, M. Functional organization of the hippocampal memory system. Proc. Natl Acad. Sci. USA 93, 13500–13507 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  28. Ringo, J. L. Stimulus specific adaptation in inferior temporal and medial temporal cortex of the monkey. Behav. Brain Res. 76, 191 –197 (1996).
    Article CAS PubMed Google Scholar
  29. Brown, M. W. & Xiang, J. Z. Recognition memory: neuronal substrates of the judgement of prior occurrence. Prog. Neurobiol. 55, 149–189 (1998). A review of what is known of neuronal responses that might provide substrates for recognition memory.
    Article CAS PubMed Google Scholar
  30. Suzuki, W. A. & Eichenbaum, H. The neurophysiology of memory . Ann. NY Acad. Sci. 911, 175– 191 (2000).
    Article CAS PubMed Google Scholar
  31. Eichenbaum, H. Cortical–hippocampal networks for declarative memory. Nature Rev. Neurosci. 1, 41–50 (2000).A review of the possible roles of the hippocampus and parahippocampal cortices in memory.
    Article CAS Google Scholar
  32. Miller, E. K. & Desimone, R. Parallel neuronal mechanisms for short-term memory. Science 263, 520– 522 (1994).
    Article CAS PubMed Google Scholar
  33. Rolls, E. T. et al. Hippocampal neurons in the monkey with activity related to the place in which a stimulus is shown. J. Neurosci. 9, 1835–1845 (1989).
    Article CAS PubMed PubMed Central Google Scholar
  34. Riches, I. P., Wilson, F. A. W. & Brown, M. W. The effects of visual stimulation and memory on neurons of the hippocampal formation and the neighboring parahippocampal gyrus and inferior temporal cortex of the primate. J. Neurosci. 11, 1763–1779 (1991).
    Article CAS PubMed PubMed Central Google Scholar
  35. Rolls, E. T., Cahusac, P. M. B., Feigenbaum, J. D. & Miyashita, Y. Responses of single neurons in the hippocampus of the macaque related to recognition memory. Exp. Brain Res. 93, 299– 306 (1993).
    Article CAS PubMed Google Scholar
  36. Zhu, X. O., Brown, M. W. & Aggleton, J. P. Neuronal signalling of information important to visual recognition memory in rat rhinal and neighbouring cortices. Eur. J. Neurosci. 7, 753–765 (1995).
    Article CAS PubMed Google Scholar
  37. Fried, I., MacDonald, K. A. & Wilson, C. L. Single neuron activity in human hippocampus and amygdala during recognition of faces and objects. Neuron 18, 753–765 (1997).
    Article CAS PubMed Google Scholar
  38. Gross, C. G., Rochamiranda, C. E. & Bender, D. B. Visual properties of neurons in inferotemporal cortex of the macaque. J. Neurophysiol. 35, 96– 111 (1972).
    Article CAS PubMed Google Scholar
  39. Mikami, A. & Kubota, B. Inferotemporal neuron activities and color discrimination with delay. Brain Res. 182 , 65–78 (1980).
    Article CAS PubMed Google Scholar
  40. Brown, M. W. in Neuronal Plasticity and Memory Formation. IBRO Monograph Series Vol. 9 (eds Ajmone-Marsan, C. & Matthies, H.) 557– 573 (Raven Press, New York, 1982).
    Google Scholar
  41. Colombo, M. & Gross, C. G. Responses of inferior temporal cortex and hippocampal neurons during delayed matching to sample in monkeys (Macaca fascicularis). Behav. Neurosci. 108, 443–455 (1994).
    Article CAS PubMed Google Scholar
  42. Hampson, R. E., Simeral, J. D. & Deadwyler, S. A. Distribution of spatial and nonspatial information in dorsal hippocampus. Nature 402, 610– 614 (1999).
    Article CAS PubMed Google Scholar
  43. Wiebe, S. P. & Staubli, U. V. Dynamic filtering of recognition memory codes in the hippocampus. J. Neurosci. 19, 10562–10574 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  44. Eacott, M. J., Gaffan, D. & Murray, E. A. Preserved recognition memory for small sets, and impaired stimulus identification for large sets, following rhinal cortex ablations in monkeys. Eur. J. Neurosci. 6, 1466– 1478 (1994).
    Article CAS PubMed Google Scholar
  45. Mishkin, M. & Delacour, J. An analysis of short-term visual memory in the monkey. J. Exp. Psychol. 1, 326–334 (1975). PubMed
    CAS Google Scholar
  46. Fuster, J. M. & Jervey, J. P. Inferotemporal neurons distinguish and retain behaviorally relevant features of visual stimuli. Science 212, 952–955 ( 1981).
    Article CAS PubMed Google Scholar
  47. Baylis, G. C. & Rolls, E. T. Responses of neurons in the inferior temporal cortex in short term and serial recognition memory tasks. Exp. Brain Res. 65, 614–622 (1987).
    Article CAS PubMed Google Scholar
  48. Maunsell, J. H. R., Sclar, G., Nealey, T. A. & DePriest, D. D. Extraretinal representations in area V4 in the macaque monkey. Vis. Neurosci. 7, 561–573 ( 1991).
    Article CAS PubMed Google Scholar
  49. Miller, E. K., Gochin, P. M. & Gross, C. G. Habituation-like decrease in the responses of neurons in inferior temporal cortex of the macaque. Vis. Neurosci. 7, 357–362 (1991).
    Article CAS PubMed Google Scholar
  50. Vogels, R., Sary, G. & Orban, G. A. How task-related are the responses of inferior temporal meurons? Vis. Neurosci. 12, 207– 214 (1995).
    Article CAS PubMed Google Scholar
  51. Young, B. J., Otto, T., Fox, G. D. & Eichenbaum, H. Memory representation within the parahippocampal region. J. Neurosci. 17, 5183–5195 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  52. O'Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Oxford University Press, Oxford, 1978).
    Google Scholar
  53. O'Keefe, J. Hippocampus, theta rhythms and spatial memory. Curr. Opin. Neurobiol. 3, 917–924 ( 1993).
    Article CAS PubMed Google Scholar
  54. Ono, T., Eifuku, S., Nakamura, K. & Nishijo, H. Monkey hippocampal neuron responses related to spatial and non-spatial influence. Neurosci. Lett. 159, 75–78 (1993).
    Article CAS PubMed Google Scholar
  55. Muller, R. A quarter of a century of place cells. Neuron 17, 813–822 (1996).A review of the properties and functions of hippocampal neurons that respond according to where an animal is.
    Article CAS PubMed Google Scholar
  56. Wiener, S. I. Spatial, behavioral and sensory correlates of hippocampal CA1 complex spike cell activity: implications for information processing functions. Prog. Neurobiol. 49, 335–361 (1996).
    Article CAS PubMed Google Scholar
  57. O'Keefe, J., Burgess, N., Donnett, J. G., Jeffery, K. J. & Maguire, E. A. Place cells, navigational accuracy, and the human hippocampus. Philos. Trans. R. Soc. London 353, 1333–1340 (1998). PubMed
    Article CAS Google Scholar
  58. Rolls, E. T., Treves, A., Robertson, R. G., Georges-François, P. & Panzeri, S. Information about spatial view in an ensemble of primate hippocampal cells. J. Neurophysiol. 79, 1797–1813 ( 1998).
    Article CAS PubMed Google Scholar
  59. Wallenstein, G. V., Eichenbaum, H. & Hasselmo, M. E. The hippocampus as an associator of discontiguous events. Trends Neurosci. 21, 317– 323 (1998).
    Article CAS PubMed Google Scholar
  60. Suzuki, W. A. The long and the short of it: memory signals in the medial temporal lobe. Neuron 24, 295–298 ( 1999).
    Article CAS PubMed Google Scholar
  61. Wood, E. R., Dudchenko, P. A. & Eichenbaum, H. The global record of memory in hippocampal neuronal activity. Nature 397, 613– 616 (1999).
    Article CAS PubMed Google Scholar
  62. Parkinson, J. K., Murray, E. A. & Mishkin, M. A selective mnemonic role for the hippocampus in monkeys: memory for the location of objects. J. Neurosci. 8, 4159–4167 (1989). PubMed
    Article Google Scholar
  63. Eichenbaum, H., Otto, T. & Cohen, N. J. Two functional components of the hippocampal memory system . Behav. Brain Sci. 17, 449– 518 (1994).
    Article Google Scholar
  64. Gaffan, D. Scene-specific memory for objects: a model of episodic memory impairment in monkeys with fornix transection. J. Cogn. Neurosci. 6, 305–320 (1994).
    Article CAS PubMed Google Scholar
  65. Gaffan, D. & Parker, A. Interaction of perirhinal cortex with the fornix-fimbria: memory for objects and 'object-in-place' memory. J. Neurosci. 16, 5864–5869 (1996).A disconnection study in monkeys showing how the perirhinal cortex and structures linked by the fornix interact on tasks that require a combination of object and location information.
    Article CAS PubMed PubMed Central Google Scholar
  66. Burwell, R. D., Shapiro, M. L., O'Malley, M. T. & Eichenbaum, H. Positional firing properties of perirhinal cortex neurons. NeuroReport 9, 3013–3018 ( 1998).
    Article CAS PubMed Google Scholar
  67. Suzuki, W. A., Miller, E. K. & Desimone, R. Object and place memory in the macaque entorhinal cortex . J. Neurophysiol. 78, 1062– 1081 (1997).
    Article CAS PubMed Google Scholar
  68. Quirk, G. J., Muller, R. U., Kubie, J. L. & Ranck, J.B. Jr. The positional firing properties of medial entorhinal neurons: description and comparison with hippocampal place cells. J. Neurosci. 12, 1945–1963 (1992).
    Article CAS PubMed PubMed Central Google Scholar
  69. Dragunow, M. A role for immediate-early transcription factors in learning and memory. Behav. Genet. 26, 293–299 (1996).
    Article CAS PubMed Google Scholar
  70. Herdegen, T. & Leah, J. D. Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins. Brain Res. Rev. 28, 370–490 (1998).
    Article CAS PubMed Google Scholar
  71. Zhu, X. O., Brown, M. W., McCabe, B. J. & Aggleton, J. P. Effects of novelty or familiarity of visual stimuli on the expression of the immediate early gene c-fos in rat brain. Neuroscience 69, 821–829 (1995).
    Article CAS PubMed Google Scholar
  72. Zhu, X. O., McCabe, B. J., Aggleton, J. P. & Brown, M. W. Mapping visual recognition memory through expression of the immediate early gene c-fos. NeuroReport 7, 1871– 1875 (1996).
    Article CAS PubMed Google Scholar
  73. Wan, H., Aggleton, J. P. & Brown, M. W. Different contributions of the hippocampus and perirhinal cortex to recognition memory. J. Neurosci. 19, 1142–1148 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  74. Hess, U. S., Lynch, G. & Gall, C. M. Regional patterns of c-fos mRNA expression in rat hippocampus following exploration of a novel environment versus performance of a well-learned discrimination. J. Neurosci. 15, 7796–7809 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  75. Montero, V. M. c-Fos induction in sensory pathways of rats exploring a novel complex environment: shifts of active thalamic reticular sectors by predominant sensory cues. Neuroscience 76, 1069–1081 (1997).
    Article CAS PubMed Google Scholar
  76. Zhu, X. O., McCabe, B. J., Aggleton, J. P. & Brown, M. W. Differential activation of the hippocampus and perirhinal cortex by novel visual stimuli and a novel environment. Neurosci. Lett. 229, 141–143 (1997).
    Article CAS PubMed Google Scholar
  77. Vann, S. D., Brown, M. W., Erichsen, J. T. & Aggleton, J. P. Fos imaging reveals differential patterns of hippocampal and parahippocampal subfield activation in rats in response to different spatial memory tasks . J. Neurosci. 20, 2711– 2718 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  78. Zola-Morgan, S., Squire, L. R., Amaral, D. G. & Suzuki, W. A. Lesions of perirhinal and parahippocampal cortex that spare the amygdala and hippocampal formation produce severe memory impairment. J. Neurosci. 9, 4355–4370 ( 1989).
    Article CAS PubMed PubMed Central Google Scholar
  79. Leonard, B. W., Amaral, D. G., Squire, L. R. & Zola-Morgan, S. Transient memory impairment in monkeys with bilateral lesions of the entorhinal cortex. J. Neurosci. 15, 5637– 5659 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  80. Ramus, S. J., Zola-Morgan, S. & Squire, L. R. Effects of lesions of perirhinal cortex or parahippocampal cortex on memory in monkeys. Soc. Neurosci. Abstr. 20, 1074 (1994).
    Google Scholar
  81. Otto, T. & Eichenbaum, H. Complementary roles of the orbital prefrontal cortex and the perirhinal–entorhinal cortices in an odor-guided delayed-nonmatching-to-sample task. Behav. Neurosci. 106, 762–775 (1992).
    Article CAS PubMed Google Scholar
  82. Buffalo, E. A., Stefanacci, L., Squire, L. R. & Zola, S. M. A re-examination of the concurrent discrimination learning task: the importance of anterior inferotemporal cortex, area TE. Behav. Neurosci. 112, 3–14 (1998).
    Article CAS PubMed Google Scholar
  83. Zola-Morgan, S., Squire, L. R., Rempel, N. L., Clower, R. P. & Amaral, D. G. Enduring memory impairment in monkeys after ischemic damage to the hippocampus. J. Neurosci. 12, 2582–2596 ( 1992).
    Article CAS PubMed PubMed Central Google Scholar
  84. Aggleton, J. P., Hunt, P. R. & Rawlins, J. N. P. The effects of hippocampal lesions upon spatial and non-spatial tests of working memory. Behav. Brain Res. 19, 133–146 (1986).
    Article CAS PubMed Google Scholar
  85. Mumby, D. G., Wood, E. R. & Pinel, J. P. J. Object recognition memory in rats is only mildly impaired by lesions of the hippocampus and amygdala. Psychobiology 20, 18–27 ( 1992).
    Article Google Scholar
  86. Mumby, D. G., Pinel, J. P. J., Kornecook, T. J., Shen, M. J. & Redila, V. A. Memory deficits following lesions of hippocampus or amygdala in rat: assessment by an object-memory test battery . Psychobiology 23, 26– 36 (1995).
    Article Google Scholar
  87. Honey, R. C., Watt, A. & Good, M. Hippocampal lesions disrupt an associative-mismatch process. J. Neurosci. 18, 2226–2230 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  88. Murray, E. A., Gaffan, D. & Mishkin, M. Neural substrates of visual stimulus–stimulus association in rhesus monkeys. J. Neurosci. 13, 4549–4561 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  89. Higuchi, S. I. & Miyashita, Y. Formation of mnemonic neuronal responses to visual paired associates in inferotemporal cortex is impaired by perirhinal and entorhinal lesions. Proc. Natl Acad. Sci. USA 93, 739–743 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  90. Morris, R. G. M., Garrud, P., Rawlins, J. N. P. & O'Keefe, J. Place navigation impaired in rats with hippocampal lesions. Nature 297, 681–683 ( 1982).
    Article CAS PubMed Google Scholar
  91. Liu, P. & Bilkey, D. K. Perirhinal cortex contributions to performance in the Morris water maze. Behav. Neurosci. 112, 304–315 (1998).
    Article CAS PubMed Google Scholar
  92. Liu, P. & Bilkey, D. K. The effects of excitotoxic lesions centred on perirhinal cortex in two versions of the radial arm maze task. Behav. Neurosci. 113, 512–524 (1999). PubMed
    Article Google Scholar
  93. Glenn, M. J. & Mumby, D. G. Place memory is intact in rats with perirhinal cortex lesions. Behav. Neurosci. 112 , 1353–1365 (1998).
    Article CAS PubMed Google Scholar
  94. Bussey, T. J., Muir, J. L. & Aggleton, J. P. Functionally dissociating aspects of event memory: the effects of combined perirhinal and postrhinal cortex lesions on object and place memory in the rat. J. Neurosci. 19, 495–502 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  95. Bussey, T. J., Duck, J., Muir, J. L. & Aggleton, J. P. Distinct patterns of behavioural impairments resulting from fornix transection or neurotoxic lesions of the perirhinal and postrhinal cortices. Behav. Brain Res. 111, 187–202 ( 2000).
    Article CAS PubMed Google Scholar
  96. Buckley, M. J. & Gaffan, D. Impairment of visual object discrimination learning after perirhinal cortex ablation. Behav. Neurosci. 111, 467–475 (1997).
    Article CAS PubMed Google Scholar
  97. Murray, E. A. & Bussey, T. J. Perceptual-mnemonic functions of the perirhinal cortex. Trends Cogn. Neurosci. 3, 142–151 (1999).A review of the possible functions of the perirhinal cortex in object perception and memory. PubMed
    Article CAS Google Scholar
  98. Wagner, A. D. & Gabrieli, J. D. E. On the relationship between recognition familiarity and perceptual fluency: evidence for distinct mnemonic processes. Acta Psychol. 98, 211– 230 (1998). PubMed
    Article CAS Google Scholar
  99. Knowlton, B. J. & Squire, L. R. Remembering and knowing: two different expressions of declarative memory. J. Exp. Psychol. Learn. Mem. Cogn. 21, 699– 710 (1995).
    Article CAS PubMed Google Scholar
  100. Hamann, S. B. & Squire, L. R. Intact perceptual memory in the absence of conscious memory. Behav. Neurosci. 111, 850–854 (1997).
    Article CAS PubMed Google Scholar
  101. Stark, C. E. L. & Squire, L. R. Recognition memory and familiarity judgments in severe amnesia: no evidence for a contribution of repetition priming. Behav. Neurosci. 114, 459–467 (2000).A single case study of a very dense amnesic in whom priming is intact but recognition is at chance.
    Article CAS PubMed Google Scholar
  102. Wagner, A. D., Stebbins, G. T., Masciari, F., Fleischman, D. A. & Gabrieli, J. D. E. Neuropsychological dissociation between recognition familiarity and perceptual priming in visual long-term memory. Cortex 34, 493– 511 (1998).
    Article CAS PubMed Google Scholar
  103. Buffalo, E. A., Reber, P. J. & Squire, L. R. The human perirhinal cortex and recognition memory . Hippocampus 8, 330–339 (1998).
    Article CAS PubMed Google Scholar
  104. Holdstock, J. S., Gutnikov, S. A., Gaffan, D. & Mayes, A. R. Perceptual and mnemonic matching-to-sample in humans: contributions of the hippocampus, perirhinal cortex and other medial temporal lobe corticies. Cortex 36, 301–322 ( 2000).Evidence that the recognition deficit in humans with damage involving the perirhinal cortex is not primarily a perceptual problem.
    Article CAS PubMed Google Scholar
  105. Hirst, W. et al. Recognition and recall in amnesics. J. Exp. Psychol. Learn. Mem. Cogn. 12, 445–451 (1986).
    Article CAS PubMed Google Scholar
  106. McMackin, D., Cockburn, J., Anslow, P. & Gaffan, D. Correlation of fornix damage with memory impairment in six cases of colloid cyst removal . Acta Neurochir. 135, 12– 18 (1995). PubMed
    Article CAS PubMed Google Scholar
  107. Aggleton, J. P. & Shaw, C. Amnesia and recognition memory: a re-analysis of psychometric data. Neuropsychologia 34, 51–62 (1996).
    Article CAS PubMed Google Scholar
  108. Parkin, A. J., Dunn, J. C., Lee, C., O'Hara, P. F. & Nussbaum, L. Neurological sequelae of Wernicke's encephalopathy in a 20-year old woman: selective impairment of frontal memory system. Brain Cogn. 21, 1–19 ( 1993).
    Article CAS PubMed Google Scholar
  109. Parkin, A. J., Yeoman, J. & Bindschaedler, C. Further characterization of the executive memory impairment following frontal lobe lesions. Brain Cogn. 26, 23–42 (1994).
    Article CAS PubMed Google Scholar
  110. Hanley, J. R. & Davies, A. D. M. in Case Studies in the Neuropsychology of Memory (ed. Parkin, A. J.) 111– 126 (Hove, Brighton, 1997).
    Google Scholar
  111. Vargha-Khadem, F., Gadian, D. G., Watkins, K. E., Connelly, A., Van Paesschen, W. & Mishkin, M. Differential effects of early hippocampal pathology on episodic and semantic memory. Science 277, 376–380 (1997).
    Article CAS PubMed Google Scholar
  112. Mayes, A. R., van Eijk, R., Gooding, P. A., Isaac, C. L. & Holdstock, J. S. What are the functional deficits produced by hippocampal and perirhinal lesions? Behav. Brain Sci. 22, 36–37 ( 1999).
    Article Google Scholar
  113. Aggleton, J. P. et al. Differential cognitive effects of colloid cysts in the third ventricle that spare or compromise the fornix. Brain 123, 101–116 (2000). PubMed
    Article Google Scholar
  114. Holdstock, J. S., Mayes, A. R., Cezayirli, E., Isaac, C. L., Aggleton, J. P. & Roberts, N. A comparison of egocentric and allocentric spatial memory in a patient with selective hippocampal damage. Neuropsychologia 38, 410–425 ( 2000).
    Article CAS PubMed Google Scholar
  115. Reed, J. M. & Squire, L. R. Impaired recognition memory in patients with lesions limited to the hippocampal formation. Behav. Neurosci. 111, 667–675 ( 1997).Evidence that amnesics with bilateral hippocampal formation damage are consistently impaired on tests of recognition memory.
    Article CAS PubMed Google Scholar
  116. Manns, J. R. & Squire, L. R. Impaired recognition memory of the Doors and People Test after damage limited to the hippocampus. Hippocampus 9, 495–499 ( 2000). PubMed
    Article Google Scholar
  117. Yonelinas, A. P. Receiver-operating characteristics in recognition memory: evidence for a dual process model. J. Exp. Psychol. Learn. Mem. Cogn. 20 , 1341–1354 (1994).
    Article CAS PubMed Google Scholar
  118. Yonelinas, A. P., Kroll, N. E. A., Dobbins, I. G., Lazzara, M. & Knight, R. T. Recollection and familiarity deficits in amnesia: convergence of remember–know, process dissociation, and receiver operating characteristic data. Neuropsychology 12, 323–339 (1998).
    Article CAS PubMed Google Scholar
  119. Verfaellie, M. & Treadwell, J. R. Status of recognition memory in amnesia. Neuropsychology 7, 5–13 (1993).
    Article Google Scholar
  120. Squire, L. R. & Zola, S. M. Episodic memory, semantic memory, and amnesia. Hippocampus 8, 205–211 (1998).
    Article CAS PubMed Google Scholar
  121. Rugg, M. D. et al. Dissociations of the neural correlates of implicit and explicit memory. Nature 392, 595– 598 (1998).Event-related-potential study showing different neural correlates of implicit and explicit memory.
    Article CAS PubMed Google Scholar
  122. Curran, T. The electrophysiology of incidental and intentional retrieval: ERP old/new effects in lexical decision and recognition memory. Neuropsychologia 37, 771–785 ( 1999).
    Article CAS PubMed Google Scholar
  123. Curran, T. Brain potentials of recollection and familiarity. Mem. Cogn. (in the press).
  124. Wilding, E. L. & Rugg, M. D. An event-related potential study of recognition memory with and without retrieval of source . Brain 119, 889–905 (1996).
    Article PubMed Google Scholar
  125. Duzel, E., Yonelinas, A. P., Mangun, G. R., Heinze, H. J. & Tulving, E. Event-related brain potential correlates of two states of conscious awareness in memory. Proc. Natl Acad. Sci. USA 94, 5973–5978 ( 1997).
    Article CAS PubMed PubMed Central Google Scholar
  126. Fernandez, G. et al. Real-time tracking of memory formation in the human rhinal cortex and hippocampus. Science 285, 1582 –1585 (1999).
    Article CAS PubMed Google Scholar
  127. Brewer, J. B., Zhao, Z., Desmond, J. E., Glover, G. H. & Gabrieli, J. D. E. Making memories: brain activity that predicts how well visual experience will be remembered. Science 281, 1185–1187 (1998). Event-related-MRI study showing how different patterns of brain activation at encoding predict retrieval success.
    Article CAS PubMed Google Scholar
  128. Henson, R. N. A., Rugg, M. D., Shallice, T., Josephs, O. & Dolan, R. J. Recollection and familiarity in recognition memory: an event-related functional magnetic imaging study. J. Neurosci. 19, 3962–3972 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  129. Eldridge, L. L., Knowlton, B. J., Furmanski, C. S., Bookheimer, S. Y. & Engel, S. A. Remembering episodes: a selective role for the hippocampus during retrieval. Nature Neurosci. 3, 1149–1152 ( 2000).Event-related-fMRI evidence that the hippocampus is only activated during recognition when it is accompanied by a recollective experience.
    Article CAS PubMed Google Scholar
  130. Gabrieli, J. D. E., Brewer, J. B., Desmond, J. E. & Glover, G. H. Separate neural bases of two fundamental memory processes in the human medial temporal lobe. Science 276, 264– 266 (1997).
    Article CAS PubMed Google Scholar
  131. Tulving, E., Markowitsch, H. J., Kapur, S., Habib, R. & Houle, S. Novelty encoding networks in the human brain: positron emission tomography data. NeuroReport 5, 2525–2528 (1994).
    Article CAS PubMed Google Scholar
  132. Vandenberghe, R., Dupont, P., Bormans, G., Mortelmans, L. & Orban, G. Blood flow in human anterior temporal cortex decreases with stimulus familiarity. NeuroImage 2, 306–313 (1995).
    Article CAS PubMed Google Scholar
  133. Stern, C. E. et al. The hippocampal formation participates in novel picture encoding: evidence from functional magnetic resonance imaging. Proc. Natl Acad. Sci. USA 93, 8660–8665 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  134. Jiang, Y., Haxby, J. V., Martin, A., Ungerleider, L. G. & Parasuraman, R. Complementary neural mechanisms for tracking items in human working memory. Science 287, 643–646 (2000).
    Article CAS PubMed Google Scholar
  135. Cho, K. et al. An fMRI study of differential perirhinal and prefrontal activation during familiarity/recency discrimination. Eur. J. Neurosci. 12, 42.13 (2000).
    Google Scholar
  136. Stark, C. E. L. & Squire, L. R. fMRI activity in the medial temporal lobe during recognition memory as a function of study–test interval. Hippocampus 10, 329– 337 (2000).
    Article CAS PubMed Google Scholar
  137. Stark, C. E. L. & Squire, L. R. Functional magnetic resonance imaging (fMRI) activity in the hippocampal region during recognition memory. J. Neurosci. 20, 7776– 7781 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  138. Standing, L. Learning 10,000 pictures. Q. J. Exp. Psychol. 25, 207–222 (1973).
    Article CAS PubMed Google Scholar
  139. Seeck, M. et al. Evidence for rapid face recognition from human scalp and intracranial electrodes. NeuroReport 8, 2749– 2754 (1997).
    Article CAS PubMed Google Scholar
  140. Hintzman, D. L., Caulton, D. A. & Levitin, D. J. Retrieval dynamics in recognition and list discrimination: further evidence of separate processes of familiarity and recall. Mem. Cogn. 26, 449–462 ( 1998). PubMed
    Article CAS Google Scholar
  141. McElree, B., Dolan, P. O. & Jacoby, L. R. Isolating the contributions of familiarity and source information to item recognition: a time course analysis. J. Exp. Psychol. Learn. Mem. Cogn. 25, 563– 582 (2000). PubMed
    Article Google Scholar
  142. Bogacz, R., Brown, M. W. & Giraud-Carrier, C. in Proc. Int. Conf. Artif. Neural Networks 773–776 (IEEE, London, 1999).
    Google Scholar
  143. Bogacz, R., Brown, M. W. & Giraud-Carrier, C. Model of familiarity discrimination in the perirhinal cortex. J. Comput. Neurosci. (in the press).
  144. Ziakopoulos, Z., Brown, M. W. & Bashir, Z. I. Input- and layer-dependent synaptic plasticity in the rat perirhinal cortex in vitro. Neuroscience 92, 459–472 (1999).
    Article CAS PubMed Google Scholar
  145. Cho, K., Kemp, N., Noel, J., Aggleton, J. P., Brown, M. W. & Bashir, Z. I. A new form of long-term depression in the perirhinal cortex. Nature Neurosci. 3, 150–156 ( 2000).
    Article CAS PubMed Google Scholar
  146. Witter, M. P., Groenewegen, H. J., Lopes da Silva, F. H. & Lohman, A. H. M. Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region. Prog. Neurobiol. 33, 161– 253 (1989).
    Article CAS PubMed Google Scholar
  147. Lavenex, P. & Amaral, D. G. Hippocampal–neocortical interactions: a hierarchy of associativity. Hippocampus 10, 420–430 (2000).
    Article CAS PubMed Google Scholar
  148. Burwell, R. D., Witter, M. P. & Amaral, D. G. Perirhinal and postrhinal cortices of the rat: a review of the neuroanatomical literature and comparison with findings from the monkey brain. Hippocampus 5, 390– 408 (1995).
    Article CAS PubMed Google Scholar
  149. Suzuki, W. A. Neuroanatomy of the monkey entorhinal, perirhinal and parahippocampal cortices: organization of cortical inputs and interconnections with amygdala and striatum . Semin. Neurosci. 8, 3– 12 (1996).
    Article Google Scholar
  150. Shi, C. J. & Cassell, M. D. Cortical, thalamic, and amygdaloid projections of rat temporal cortex. J. Comp. Neurol. 382, 153–175 (1997).
    Article CAS PubMed Google Scholar
  151. Burwell, R. D. & Amaral, D. G. Cortical afferents of the perirhinal, postrhinal, and entorhinal cortices of the rat. J. Comp. Neurol. 398, 179–205 (1998).
    Article CAS PubMed Google Scholar

Download references