The spindle: a dynamic assembly of microtubules and motors (original) (raw)

References

  1. Andersen, S. S. Spindle assembly and the art of regulating microtubule dynamics by MAPs and Stathmin/Op18. Trends Cell Biol. 10, 261 –267 (2000).
    Article CAS PubMed Google Scholar
  2. Compton, D. A. Spindle assembly in animal cells. Annu. Rev. Biochem. 69, 95–114 (2000).
    Article CAS PubMed Google Scholar
  3. Heald, R. Motor function in the mitotic spindle. Cell 102, 399–402 (2000).
    Article CAS PubMed Google Scholar
  4. Hyman, A. A. & Karsenti, E. Morphogenetic properties of microtubules and mitotic spindle assembly. Cell 84, 401–410 (1996).
    Article CAS PubMed Google Scholar
  5. Inoue, S. & Salmon, E. D. Force generation by microtubule assembly/disassembly in mitosis and related movements. Mol. Biol. Cell 6, 1619–1640 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  6. Maney, T., Ginkel, L. M., Hunter, A. W. & Wordeman, L. The kinetochore of higher eucaryotes: a molecular view. Int. Rev. Cytol. 194, 67–131 ( 2000).
    Article CAS PubMed Google Scholar
  7. Rieder, C. L. & Salmon, E. D. The vertebrate cell kinetochore and its roles during mitosis. Trends Cell Biol. 8, 310–318 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  8. Sharp, D. J., Rogers, G. C. & Scholey, J. M. Microtubule motors in mitosis. Nature 407, 41–47 ( 2000).
    Article CAS PubMed Google Scholar
  9. Walczak, C. E. Microtubule dynamics and tubulin interacting proteins. Curr. Opin. Cell Biol. 12, 52–56 ( 2000).
    Article CAS PubMed Google Scholar
  10. Desai, A. & Mitchison, T. J. Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol. 13, 83–117 (1997).
    Article CAS PubMed Google Scholar
  11. Goldstein, L. S. & Philp, A. V. The road less traveled: emerging principles of kinesin motor utilization. Annu. Rev. Cell Dev. Biol. 15, 141–183 (1999).
    Article CAS PubMed Google Scholar
  12. Hirokawa, N., Noda, Y. & Okada, Y. Kinesin and dynein superfamily proteins in organelle transport and cell division. Curr. Opin. Cell Biol. 10, 60–73 (1998).
    Article CAS PubMed Google Scholar
  13. Kim, A. J. & Endow, S. A. A kinesin family tree . J. Cell Sci. 113, 3681– 3682 (2000).
    CAS PubMed Google Scholar
  14. Mastronarde, D. N., McDonald, K. L., Ding, R. & McIntosh, J. R. Interpolar spindle microtubules in PTK cells. J. Cell Biol. 123, 1475–1489 (1993).
    Article CAS PubMed Google Scholar
  15. Winey, M. & O'Toole, E. T. The spindle cycle in budding yeast. Nature Cell Biol. 3, E23 –E27 (2001).
    Article CAS PubMed Google Scholar
  16. Kubai, D. F. The evolution of the mitotic spindle. Int. Rev. Cytol. 43, 167–227 (1975).
    Article CAS PubMed Google Scholar
  17. Saxton,W. M. et al. Tubulin dynamics in cultured mammalian cells. J. Cell Biol. 99, 2175–2186 (1984).
    Article CAS PubMed Google Scholar
  18. Salmon, E. D., Leslie, R. J., Saxton, W. M., Karow, M. L. & McIntosh, J. R. Spindle microtubule dynamics in sea urchin embryos: analysis using a fluorescein-labeled tubulin and measurements of fluorescence redistribution after laser photobleaching . J. Cell Biol. 99, 2165– 2174 (1984).
    Article CAS PubMed Google Scholar
  19. Hush, J. M., Wadsworth, P., Callaham, D. A. & Hepler, P. K. Quantification of microtubule dynamics in living plant cells using fluorescence redistribution after photobleaching. J. Cell Sci. 107 , 775–784 (1994).
    PubMed Google Scholar
  20. Zhai, Y., Kronebusch, P. J. & Borisy, G. G. Kinetochore microtubule dynamics and the metaphase-anaphase transition. J. Cell Biol. 131, 721– 734 (1995).
    Article CAS PubMed Google Scholar
  21. Verde, F., Dogterom, M., Stelzer, E., Karsenti, E. & Leibler, S. Control of microtubule dynamics and length by cyclin A- and cyclin B-dependent kinases in Xenopus egg extracts. J. Cell Biol. 118, 1097– 1108 (1992).
    Article CAS PubMed Google Scholar
  22. Cassimeris, L. Accessory protein regulation of microtubule dynamics throughout the cell cycle . Curr. Opin. Cell Biol. 11, 134– 141 (1999).
    Article CAS PubMed Google Scholar
  23. Belmont, L. D. & Mitchison, T. J. Identification of a protein that interacts with tubulin dimers and increases the catastrophe rate of microtubules. Cell 84, 623– 631 (1996).
    Article CAS PubMed Google Scholar
  24. Walczak, C. E., Mitchison, T. J. & Desai, A. XKCM1: a Xenopus kinesin-related protein that regulates microtubule dynamics during mitotic spindle assembly . Cell 84, 37–47 (1996).
    Article CAS PubMed Google Scholar
  25. Gigant, B. et al. The 4 Å X-ray structure of a tubulin:stathmin-like domain complex. Cell 102, 809– 816 (2000).
    Article CAS PubMed Google Scholar
  26. Jourdain, L., Curmi, P., Sobel, A., Pantaloni, D. & Carlier, M-F. Stathmin: a tubulin-sequestering protein which forms a ternary T2S complex with two tubulin molecules. Biochemistry 36, 10817–10821 (1997).
    Article CAS PubMed Google Scholar
  27. Segerman, B., Larsson, N., Holmfeldt, P. & Gullberg, M. Mutational analysis of Op18/stathmin-tubulin interacting surfaces. Binding co-operativity controls tubulin GTP-hydrolysis in the ternary complex. J. Biol. Chem. 275, 35759–35766 (2000).
    Article CAS PubMed Google Scholar
  28. Howell, B., Larsson, N., Gullberg, M. & Cassimeris, L. Dissociation of the tubulin-sequestering and microtubule catastrophe-promoting activities of oncoprotein 18/stathmin. Mol. Biol. Cell 10, 105–118 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  29. Larsson, N. et al. Op18/stathmin mediates multiple region-specific tubulin and microtubule-regulating activities. J. Cell Biol. 146 , 1289–1302 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  30. McNally, F. J. Microtubule dynamics: controlling split ends. Curr. Biol. 9, R274–R276 (1999).
    Article CAS PubMed Google Scholar
  31. Desai, A., Verma, S., Mitchison, T. J. & Walczak, C. E. Kin I kinesins are microtubule-destabilizing enzymes. Cell 96, 69–78 (1999).
    Article CAS PubMed Google Scholar
  32. Wang, P. J. & Huffaker, T. C. Stu2p: a microtubule-binding protein that is an essential component of the yeast spindle pole body. J. Cell Biol. 139, 1271–1280 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  33. Nabeshima, K. et al. Dynamics of centromeres during metaphase–anaphase transition in fission yeast: Dis1 is implicated in force balance in metaphase bipolar spindle. Mol. Biol. Cell 9, 3211– 3225 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  34. Charrasse, S. et al. The TOGp protein is a new human microtubule-associated protein homologous to the Xenopus XMAP215. J. Cell Sci. 111, 1371–1383 (1998).
    CAS PubMed Google Scholar
  35. Matthews, L. R., Carter, P., Thierry-Mieg, D. & Kemphues, K. ZYG-9, a Caenorhabditis elegans protein required for microtubule organization and function, is a component of meiotic and mitotic spindle poles. J. Cell Biol. 141, 1159–1168 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  36. Graf, R., Daunderer, C. & Schliwa, M. Dictyostelium DdCP224 is a microtubule-associated protein and a permanent centrosomal resident involved in centrosome duplication . J. Cell Sci. 113, 1747– 1758 (2000).
    CAS PubMed Google Scholar
  37. Gard, D. L. & Kirschner, M. W. A microtubule-associated protein from Xenopus eggs that specifically promotes assembly at the plus-end. J. Cell Biol. 105, 2203– 2215 (1987).
    Article CAS PubMed Google Scholar
  38. Vasquez, R. J., Gard, D. L. & Cassimeris, L. XMAP from Xenopus eggs promotes rapid plus end assembly of microtubules and rapid microtubule polymer turnover . J. Cell Biol. 127, 985– 993 (1994).
    Article CAS PubMed Google Scholar
  39. Tournebize, R. et al. Control of microtubule dynamics by the antagonistic activities of XMAP215 and XKCM1 in Xenopus egg extracts. Nature Cell Biol. 2, 13–19 ( 2000).
    Article CAS PubMed Google Scholar
  40. Vasquez, R. J., Gard, D. L. & Cassimeris, L. Phosphorylation by CDK1 regulates XMAP215 function in vitro. Cell. Motil. Cytoskeleton 43, 310–321 (1999).
    Article CAS PubMed Google Scholar
  41. Mitchison, T. J. Polewards microtubule flux in the mitotic spindle: evidence from photoactivation of fluorescence. J. Cell Biol. 109, 637– 652 (1989).
    Article CAS PubMed Google Scholar
  42. Waterman-Storer, C. M., Desai, A., Bulinski, J. C. & Salmon, E. D. Fluorescent speckle microscopy, a method to visualize the dynamics of protein assemblies in living cells. Curr. Biol. 8, 1227–1230 (1998).
    Article CAS PubMed Google Scholar
  43. Sawin, K. E. & Mitchison, T. J. Poleward microtubule flux mitotic spindles assembled in vitro. J. Cell Biol. 112, 941–954 ( 1991).
    Article CAS PubMed Google Scholar
  44. Waters, J. C., Mitchison, T. J., Rieder, C. L. & Salmon, E. D. The kinetochore microtubule minus-end disassembly associated with poleward flux produces a force that can do work. Mol. Biol. Cell 7, 1547–1558 ( 1996).
    Article CAS PubMed PubMed Central Google Scholar
  45. Maddox, P. S., Bloom, K. S. & Salmon, E. D. The polarity and dynamics of microtubule assembly in the budding yeast Saccharomyces cerevisiae. Nature Cell Biol. 2, 36–41 (2000).
    Article CAS PubMed Google Scholar
  46. Mallavarapu, A., Sawin, K. & Mitchison, T. A switch in microtubule dynamics at the onset of anaphase B in the mitotic spindle of Schizosaccharomyces pombe . Curr. Biol. 9, 1423– 1426 (1999).
    Article CAS PubMed Google Scholar
  47. Srayko, M., Buster, D. W., Bazirgan, O. A., McNally, F. J. & Mains, P. E. MEI-1/MEI-2 katanin-like microtubule severing activity is required for Caenorhabditis elegans meiosis. Genes Dev. 14, 1072 –1084 (2000).
    CAS PubMed PubMed Central Google Scholar
  48. McNally, F. J. & Thomas, S. Katanin is responsible for the M-phase microtubule-severing activity in Xenopus eggs. Mol. Biol. Cell 9, 1847–1861 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  49. Heald, R. et al. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 382, 420–425 (1996).
    Article CAS PubMed Google Scholar
  50. Heald, R., Tournebize, R., Habermann, A., Karsenti, E. & Hyman, A. Spindle assembly in Xenopus egg extracts: respective roles of centrosomes and microtubule self-organization. J. Cell Biol. 138, 615 –628 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  51. Desai, A., Maddox, P. S., Mitchison, T. J. & Salmon, E. D. Anaphase A chromosome movement and poleward spindle microtubule flux occur at similar rates in Xenopus extract spindles. J. Cell Biol. 141, 703–713 ( 1998).
    Article CAS PubMed PubMed Central Google Scholar
  52. Winey, M. Cell cycle: driving the centrosome cycle. Curr. Biol. 9, R449–R452 (1999).
    Article CAS PubMed Google Scholar
  53. Ma, S., Trivinos-Lagos, L., Graf, R. & Chisholm, R. L. Dynein intermediate chain mediated dynein-dynactin interaction is required for interphase microtubule organization and centrosome replication and separation in Dictyostelium. J. Cell Biol. 147, 1261–1274 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  54. Gonczy, P., Pichler, S., Kirkham, M. & Hyman, A. A. Cytoplasmic dynein is required for distinct aspects of MTOC positioning, including centrosome separation, in the one cell stage Caenorhabditis elegans embryo. J. Cell Biol. 147, 135– 150 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  55. Karki, S. & Holzbaur, E. L. Cytoplasmic dynein and dynactin in cell division and intracellular transport. Curr. Opin. Cell Biol. 11, 45–53 (1999).
    Article CAS PubMed Google Scholar
  56. Sharp, D. J. et al. Functional coordination of three mitotic motors in Drosophila embryos. Mol. Biol. Cell 11, 241– 253 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  57. Robinson, J. T., Wojcik, E. J., Sanders, M. A., McGrail, M. & Hays, T. S. Cytoplasmic dynein is required for the nuclear attachment and migration of centrosomes during mitosis in Drosophila. J. Cell Biol. 146, 597–608 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  58. Sadler, P. L. & Shakes, D. C. Anucleate Caenorhabditis elegans sperm can crawl, fertilize oocytes and direct anterior–posterior polarization of the 1-cell embryo. Development 127, 355–366 (2000).
    CAS PubMed Google Scholar
  59. Khodjakov, A., Cole, R. W., Oakley, B. R. & Rieder, C. L. Centrosome-independent mitotic spindle formation in vertebrates. Curr. Biol. 10, 59–67 ( 2000).
    Article CAS PubMed Google Scholar
  60. Walczak, C. E., Vernos, I., Mitchison, T. J., Karsenti, E. & Heald, R. A model for the proposed roles of different microtubule-based motor proteins in establishing spindle bipolarity. Curr. Biol. 8, 903– 913 (1998).
    Article CAS PubMed Google Scholar
  61. De Brabander, M., Geuens, G., De Mey, J. & Joniau, M. Nucleated assembly of mitotic microtubules in living PTK2 cells after release from nocodazole treatment. Cell. Motil. 1, 469–483 (1981).
    Article CAS PubMed Google Scholar
  62. Karsenti, E., Newport, J. & Kirschner, M. Respective roles of centrosomes and chromatin in the conversion of microtubule arrays from interphase to metaphase. J. Cell Biol. 99, 47s–54s (1984).
    Article CAS PubMed PubMed Central Google Scholar
  63. Kalab, P., Pu, R. T. & Dasso, M. The Ran GTPase regulates mitotic spindle assembly. Curr. Biol. 9, 481–484 ( 1999).
    Article CAS PubMed Google Scholar
  64. Wilde, A. & Zheng, Y. Stimulation of microtubule aster formation and spindle assembly by the small GTPase Ran. Science 284, 1359–1362 ( 1999).
    Article CAS PubMed Google Scholar
  65. Ohba, T., Nakamura, M., Nishitani, H. & Nishimoto, T. Self-organization of microtubule asters induced in Xenopus egg extracts by GTP-bound Ran. Science 284, 1356– 1358 (1999).
    Article CAS PubMed Google Scholar
  66. Carazo-Salas, R. E. et al. Generation of GTP-bound Ran by RCC1 is required for chromatin-induced mitotic spindle formation. Nature 400, 178 –181 (1999).
    Article CAS PubMed Google Scholar
  67. King, S. M. The dynein microtubule motor. Biochim. Biophys. Acta 1496, 60–75 (2000).
    Article CAS PubMed Google Scholar
  68. Saunders, W. S. & Hoyt, M. A. Kinesin-related proteins required for structural integrity of the mitotic spindle. Cell 70, 451–458 ( 1992).
    Article CAS PubMed Google Scholar
  69. Sharp, D. J. et al. The bipolar kinesin, KLP61F, cross-links microtubules within interpolar microtubule bundles of Drosophila embryonic mitotic spindles . J. Cell Biol. 144, 125– 138 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  70. Kapoor, T. M., Mayer, T. U., Coughlin, M. L. & Mitchison, T. J. Probing spindle assembly mechanisms with monastrol, a small molecule inhibitor of the mitotic kinesin, Eg5. J. Cell Biol. 150, 975–988 ( 2000).
    Article CAS PubMed PubMed Central Google Scholar
  71. Mayer, T. U. et al. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 286, 971–974 (1999).
    Article CAS PubMed Google Scholar
  72. Saunders, W. S., Koshland, D., Eshel, D., Gibbons, I. R. & Hoyt, M. A. Saccharomyces cerevisiae kinesin- and dynein-related proteins required for anaphase chromosome segregation. J. Cell Biol. 128, 617– 624 (1995).
    Article CAS PubMed Google Scholar
  73. Vernos, I. et al. Xklp1, a chromosomal Xenopus kinesin-like protein essential for spindle organization and chromosome positioning. Cell 81, 117–127 (1995).
    Article CAS PubMed Google Scholar
  74. Nedelec, F. J., Surrey, T., Maggs, A. C. & Leibler, S. Self-organization of microtubules and motors. Nature 389, 305–308 (1997).
    Article CAS PubMed Google Scholar
  75. Merdes, A., Ramyar, K., Vechio, J. D. & Cleveland, D. W. A complex of NuMA and cytoplasmic dynein is essential for mitotic spindle assembly. Cell 87, 447– 458 (1996).
    Article CAS PubMed Google Scholar
  76. Merdes, A., Heald, R., Samejima, K., Earnshaw, W. C. & Cleveland, D. W. Formation of spindle poles by dynein/dynactin-dependent transport of NuMA. J. Cell Biol. 149, 851–862 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  77. Wittmann, T., Boleti, H., Antony, C., Karsenti, E. & Vernos, I. Localization of the kinesin-like protein Xklp2 to spindle poles requires a leucine zipper, a microtubule-associated protein, and dynein. J. Cell Biol. 143, 673–685 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  78. Verde, F., Berrez, J. M., Antony, C. & Karsenti, E. Taxol-induced microtubule asters in mitotic extracts of Xenopus eggs: requirement for phosphorylated factors and cytoplasmic dynein. J. Cell Biol. 112, 1177–1187 (1991).
    Article CAS PubMed Google Scholar
  79. Dionne, M. A., Howard, L. & Compton, D. A. NuMA is a component of an insoluble matrix at mitotic spindle poles. Cell. Motil. Cytoskeleton 42, 189–203 (1999).
    Article CAS PubMed Google Scholar
  80. Harborth, J., Wang, J., Gueth-Hallonet, C., Weber, K. & Osborn, M. Self assembly of NuMA: multiarm oligomers as structural units of a nuclear lattice. EMBO J. 18 , 1689–1700 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  81. Wittmann, T., Wilm, M., Karsenti, E. & Vernos, I. TPX2, A novel Xenopus MAP involved in spindle pole organization. J. Cell Biol. 149, 1405–1418 ( 2000).
    Article CAS PubMed PubMed Central Google Scholar
  82. Rogers, G. C. et al. A kinesin-related protein, KRP(180), positions prometaphase spindle poles during early sea urchin embryonic cell division. J. Cell Biol. 150, 499–512 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  83. Boleti, H., Karsenti, E. & Vernos, I. Xklp2, a novel Xenopus centrosomal kinesin-like protein required for centrosome separation during mitosis. Cell 84, 49–59 ( 1996).
    Article CAS PubMed Google Scholar
  84. de Saint Phalle, B. & Sullivan, W. Spindle assembly and mitosis without centrosomes in parthenogenetic Sciara embryos. J. Cell Biol. 141, 1383–1391 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  85. Megraw, T. L., Li, K., Kao, L. R. & Kaufman, T. C. The centrosomin protein is required for centrosome assembly and function during cleavage in Drosophila. Development 126, 2829–2839 (1999).
    CAS PubMed Google Scholar
  86. Vaizel-Ohayon, D. & Schejter, E. D. Mutations in centrosomin reveal requirements for centrosomal function during early Drosophila embryogenesis. Curr. Biol. 9, 889–898 (1999).
    Article CAS PubMed Google Scholar
  87. Korinek, W. S., Copeland, M. J., Chaudhuri, A. & Chant, J. Molecular linkage underlying microtubule orientation toward cortical sites in yeast. Science 287, 2257– 2259 (2000).
    Article CAS PubMed Google Scholar
  88. Yin, H., Pruyne, D., Huffaker, T. C. & Bretscher, A. Myosin V orientates the mitotic spindle in yeast. Nature 406, 1013–1015 (2000).
    Article CAS PubMed Google Scholar
  89. Lee, L. et al. Positioning of the mitotic spindle by a cortical-microtubule capture mechanism. Science 287, 2260– 2262 (2000).
    Article CAS PubMed Google Scholar
  90. Clarke, D. J. & Gimenez-Abian, J. F. Checkpoints controlling mitosis. Bioessays 22, 351– 363 (2000).
    Article CAS PubMed Google Scholar
  91. Khodjakov, A. & Rieder, C. L. Kinetochores moving away from their associated pole do not exert a significant pushing force on the chromosome. J. Cell Biol. 135, 315– 327 (1996).
    Article CAS PubMed Google Scholar
  92. Rieder, C. L. & Alexander, S. P. Kinetochores are transported poleward along a single astral microtubule during chromosome attachment to the spindle in newt lung cells. J. Cell Biol. 110 , 81–95 (1990).
    Article CAS PubMed Google Scholar
  93. Rieder, C. L., Davison, E. A., Jensen, L. C., Cassimeris, L. & Salmon, E. D. Oscillatory movements of monooriented chromosomes and their position relative to the spindle pole result from the ejection properties of the aster and half-spindle. J. Cell Biol. 103, 581–591 (1986).
    Article CAS PubMed Google Scholar
  94. Wordeman, L. & Mitchison, T. J. Identification and partial characterization of mitotic centromere- associated kinesin, a kinesin-related protein that associates with centromeres during mitosis. J. Cell Biol. 128, 95–104 (1995).
    Article CAS PubMed Google Scholar
  95. Yen, T. J., Li, G., Schaar, B. T., Szilak, I. & Cleveland, D. W. CENP-E is a putative kinetochore motor that accumulates just before mitosis. Nature 359, 536–539 (1992).
    Article CAS PubMed Google Scholar
  96. Steuer, E. R., Wordeman, L., Schroer, T. A. & Sheetz, M. P. Localization of cytoplasmic dynein to mitotic spindles and kinetochores. Nature 345, 266–268 ( 1990).
    Article CAS PubMed Google Scholar
  97. Pfarr, C. M. et al. Cytoplasmic dynein is localized to kinetochores during mitosis . Nature 345, 263–265 (1990).
    Article CAS PubMed Google Scholar
  98. King, J. M., Hays, T. S. & Nicklas, R. B. Dynein is a transient kinetochore component whose binding is regulated by microtubule attachment, not tension. J. Cell Biol. 151, 739–748 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  99. Echeverri, C. J., Paschal, B. M., Vaughan, K. T. & Vallee, R. B. Molecular characterization of the 50-kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organization during mitosis. J. Cell Biol. 132, 617– 633 (1996).
    Article CAS PubMed Google Scholar
  100. Sharp, D. J., Rogers, G. C. & Scholey, J. M. Cytoplasmic dynein is required for poleward chromosome movement during mitosis in Drosophila embryos. Nature Cell Biol. 2, 922–930 (2000).
    Article CAS PubMed Google Scholar
  101. Savoian, M. S., Goldberg, M. L. & Rieder, C. L. The rate of poleward chromosome motion is attenuated in Drosophila ZW10 and ROD mutants. Nature Cell Biol. 2, 948–952 (2000).
    Article CAS PubMed Google Scholar
  102. Schaar, B. T., Chan, G. K., Maddox, P., Salmon, E. D. & Yen, T. J. CENP-E function at kinetochores is essential for chromosome alignment. J. Cell Biol. 139, 1373–1382 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  103. Wood, K. W., Sakowicz, R., Goldstein, L. S. & Cleveland, D. W. CENP-E is a plus end-directed kinetochore motor required for metaphase chromosome alignment. Cell 91, 357– 366 (1997).
    Article CAS PubMed Google Scholar
  104. Yucel, J. K. et al. CENP-meta, an essential kinetochore kinesin required for the maintenance of metaphase chromosome alignment in Drosophila. J. Cell Biol. 150, 1–11 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  105. Abrieu, A., Kahana, J. A., Wood, K. W. & Cleveland, D. W. CENP-E as an essential component of the mitotic checkpoint in vitro. Cell 102, 817–826 ( 2000).
    Article CAS PubMed Google Scholar
  106. Yao, X., Abrieu, A., Zheng, Y., Sullivan, K. F. & Cleveland, D. W. CENP-E forms a link between attachment of spindle microtubules to kinetochores and the mitotic checkpoint . Nature Cell Biol. 2, 484– 491 (2000).
    Article CAS PubMed Google Scholar
  107. Lombillo, V. A., Nislow, C., Yen, T. J., Gelfand, V. I. & McIntosh, J. R. Antibodies to the kinesin motor domain and CENP-E inhibit microtubule depolymerization-dependent motion of chromosomes in vitro. J. Cell Biol. 128, 107–115 (1995).
    Article CAS PubMed Google Scholar
  108. Maney, T., Hunter, A. W., Wagenbach, M. & Wordeman, L. Mitotic centromere-associated kinesin is important for anaphase chromosome segregation. J. Cell Biol. 142, 787– 801 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  109. Theurkauf, W. E. & Hawley, R. S. Meiotic spindle assembly in Drosophila females: behavior of nonexchange chromosomes and the effects of mutations in the nod kinesin-like protein. J. Cell Biol. 116, 1167–1180 (1992).
    Article CAS PubMed Google Scholar
  110. Funabiki, H. & Murray, A. W. The Xenopus chromokinesin Xkid is essential for metaphase chromosome alignment and must be degraded to allow anaphase chromosome movement. Cell 102, 411–424 (2000).
    Article CAS PubMed Google Scholar
  111. Antonio, C. et al. Xkid, a chromokinesin required for chromosome alignment on the metaphase plate. Cell 102, 425– 435 (2000).
    Article CAS PubMed Google Scholar
  112. Uhlmann, F., Lottspeich, F. & Nasmyth, K. Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature 400 , 37–42 (1999).
    Article CAS PubMed Google Scholar
  113. Uhlmann, F., Wernic, D., Poupart, M-A., Koonin, E. V. & Nasmyth, K. Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell 103, 375–386 ( 2000).
    Article CAS PubMed Google Scholar
  114. Waizenegger, I. C., Hauf, S., Meinke, A. & Peters, J-M. Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell 103, 399–410 (2000).
    Article CAS PubMed Google Scholar
  115. Mitchison, T. J. & Salmon, E. D. Poleward kinetochore fiber movement occurs during both metaphase and anaphase-A in newt lung cell mitosis. J. Cell Biol. 119, 569– 582 (1992).
    Article CAS PubMed Google Scholar
  116. Nicklas, R. B. The forces that move chromosomes in mitosis. Annu. Rev. Biophys. Biophys. Chem. 17, 431–449 (1988).
    Article CAS PubMed Google Scholar

Download references