The bacterial conjugation protein TrwB resembles ring helicases and F1-ATPase (original) (raw)

References

  1. Stachel, S. E. & Zambryski, P. Agrobacterium tumefaciens and the susceptible plant cell: a novel adaptation of extracellular recognition and DNA conjugation. Cell 47, 155–157 (1986).
    Article CAS Google Scholar
  2. Heinemann, J. A. & Sprague, G. F. J. Bacterial conjugative plasmids mobilize DNA transfer between bacteria and yeast. Nature 340, 205–209 (1989).
    Article ADS CAS Google Scholar
  3. Wu, L. J., Lewis, P. J., Allmansberger, R., Hauser, P. M. & Errington, J. A conjugation-like mechanism for prespore chromosome partitioning during sporulation in Bacillus subtilis. Gene Dev. 9, 1316–1326 (1995).
    Article CAS Google Scholar
  4. Llosa, M., Bolland, S. & de la Cruz, F. Genetic organization of the conjugal DNA processing region of the IncW plasmid R388. J. Mol. Biol. 235, 448–464 (1994).
    Article CAS Google Scholar
  5. Moncalián, G. et al. Characterization of ATP and DNA binding activities of TrwB, the coupling protein essential in plasmid R388 conjugation. J. Biol. Chem. 274, 36117–36124 (1999).
    Article Google Scholar
  6. Zechner, E. L. in The Horizontal Gene Pool: Bacterial Plasmids and Gene Spread (ed. Thomas, C. M.) 87–173 (Harwood Academic, London, 2000).
    Google Scholar
  7. Cabezón, E., Sastre, J. I. & de la Cruz, F. Genetic evidence of a coupling role for the TraG protein family in bacterial conjugation. Mol. Gen. Genet. 254, 400–406 (1997).
    Article Google Scholar
  8. Begg, K. J., Dewar, S. J. & Donachie, W. D. A new Escherichia coli cell division gene, ftsK. J. Bacteriol. 177, 6211–6222 (1995).
    Article CAS Google Scholar
  9. Walker, J. E., Saraste, M., Runswick, M. J. & Gay, N. J. Distantly related sequences in the α- and β-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1, 945–951 (1982).
    Article CAS Google Scholar
  10. Abrahams, J. P., Leslie, A. G. W., Lutter, R. & Walker, J. E. Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370, 621–628 (1994).
    Article ADS CAS Google Scholar
  11. Singleton, M. R., Sawaya, M. R., Ellenberger, T. & Wigley, D. B. Crystal structure of T7 gene 4 ring helicase indicates a mechanism for sequential hydrolysis of nucleotides. Cell 101, 589–600 (2000).
    Article CAS Google Scholar
  12. Story, R. M., Weber, I. T. & Steitz, T. A. The structure of the E.coli recA protein monomer and polymer. Nature 355, 318–325 (1992).
    Article ADS CAS Google Scholar
  13. Sawaya, M. R., Guo, S., Tabor, S., Richardson, C. C. & Ellenberger, T. Crystal structure of the helicase domain from the replicative helicase-primase of bacteriophage T7. Cell 99, 167–177 (1999).
    Article CAS Google Scholar
  14. Guenther, B., Onrust, R., Sali, A., O'Donnell, M. & Kuriyan, J. Crystal structure of the δ′ subunit of the clamp-loader complex of E.coli DNA polymerase III. Cell 91, 335–345 (1997).
    Article CAS Google Scholar
  15. Lenzen, C. U., Steinmann, D., Whiteheart, S. W. & Weis, W. I. Crystal structure of the hexamerization domain of N-ethylmaleimide-sensitive fusion protein. Cell 94, 525–535 (1998).
    Article CAS Google Scholar
  16. Subramanya, H. S., Bird, L. E., Brannigan, J. A. & Wigley, D. B. Crystal structure of a DExx box DNA helicase. Nature 384, 379–383 (1996).
    Article ADS CAS Google Scholar
  17. Subramanya, H. S. et al. Crystal structure of the site-specific recombinase, XerD. EMBO J. 16, 5178–5187 (1997).
    Article CAS Google Scholar
  18. Egelman, E. H., Yu, X., Wild, R., Hingorani, M. M. & Patel, S. M. Bacteriophage T7 helicase/primase proteins form rings around single-stranded DNA that suggest a general structure for hexameric helicases. Proc. Natl Acad. Sci. USA 92, 3869–3873 (1995).
    Article ADS CAS Google Scholar
  19. Hacker, K. J. & Johnson, K. A. A hexameric helicase encircles one DNA strand and excludes the other during DNA unwinding. Biochemistry 36, 14080-14087 (1997).
    Article Google Scholar
  20. Yu, X., Hingorani, M. M., Patel, S. S. & Egelman, E. H. DNA is bound within the central hole to one or two of the six subunits of the T7 DNA helicase. Nature Struct. Biol. 3, 740–743 (1996).
    Article CAS Google Scholar
  21. Soultanas, P. & Wigley, D. B. DNA helicases: ‘inching forward’. Curr. Opin. Struct. Biol. 10, 124–128 (2000).
    Article CAS Google Scholar
  22. Raney, K. D. & Benkovic, S. J. Bacteriophage T4 DDA helicase translocates in an unidirectional fashion on single-stranded DNA. J. Biol. Chem. 270, 22236–22242 (1995).
    Article CAS Google Scholar
  23. Kaplan, D. L. The 3′-tail of a forked-duplex sterically determines whether one or two DNA strands pass through the central channel of a replication-fork helicase. J. Mol. Biol. 301, 285–299 (2000).
    Article CAS Google Scholar
  24. Leslie, A. G. W. in Crystallographic computing V (eds Moras, D., Podjarny, A. D. & Thierry, J. C.) 27–38 (Oxford Univ. Press, Oxford, 1991).
    Google Scholar
  25. CCP4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).
    Article Google Scholar
  26. Sheldrick, G. M. Patterson superposition and ab initio phasing. Methods Enzymol. 276, 628–641 (1997).
    Article CAS Google Scholar
  27. Brünger, A. T. et al. Crystallography & NMR System: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).
    Article Google Scholar
  28. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994).
    Article Google Scholar
  29. Evans, S. V. SETOR: hardware lighted three-dimensional solid model representations of macromolecules. J. Mol. Graphics 11, 134–138 (1993).
    Article CAS Google Scholar
  30. Nicholls, A., Bharadwaj, R. & Honig, B. GRASP: graphical representation and analysis of surface properties. Biophys. J. 64, A166–A166 (1993).
    Google Scholar
  31. Sastre, J. I., Cabezon, E. & de la Cruz, F. The carboxyl terminus of protein TraD adds specificity and efficiency to F-plasmid conjugative transfer. J. Bacteriol. 180, 6039–6042 (1998).
    CAS PubMed PubMed Central Google Scholar

Download references