Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells (original) (raw)

References

  1. Slamon, D. J. et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235, 177–182 (1987).
    Article CAS Google Scholar
  2. Slamon, D. J. et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244, 707–712 (1989).
    Article CAS Google Scholar
  3. Yu, D. & Hung, M-C. in DNA Alterations in Cancer (ed. Ehrlich, M.) Ch. 21 (Natick, Massachusetts, 2000).
    Google Scholar
  4. Zhou, B. P. et al. HER-2/neu blocks tumor necrosis factor-induced apoptosis via the Akt/NF-kB pathways. J. Biol. Chem. 275, 8027–8031 (2000).
    Article CAS Google Scholar
  5. Downward, J. Mechanisms and consequences of activation of protein kinase B/Akt. Curr. Opin. Cell Biol. 10, 262–267 (1998).
    Article CAS Google Scholar
  6. Datta, S. R., Brunet, A. & Greenberg, M. E. Cellular survival: a play in three Akts. Genes Dev. 13, 2905–2927 (1999).
    Article CAS Google Scholar
  7. Peso, L. D., Gonzalez-Garcia, M., Page, C., Herrera, R. & Nunez, G. Interleukin-3-induced phosphorylation of bad through the protein kinase Akt. Science 278, 687–689 (1997).
    Article Google Scholar
  8. Cardone, M. H. et al. Regulation of cell death protease caspase-9 by phosphorylation. Science 282, 1318–1321 (1998).
    Article CAS Google Scholar
  9. Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor. Cell 96, 857–868 (1999).
    Article CAS Google Scholar
  10. Kops., G. J. et al. Direct control of the forkhead transcription factor AFX by protein kinase B. Nature 398, 630–634 (1999).
    Article CAS Google Scholar
  11. Ozes, O. N. et al. NF-kB activation by tumor necrosis factor requires the Akt serine-threonine kinase. Nature 401, 82–85 (1999).
    Article CAS Google Scholar
  12. Romashkova, J. A. & Makarov, S. S. NF-kB is a target of Akt in anti-apoptotic PDGF signalling. Nature 401, 86–90 (1999).
    Article CAS Google Scholar
  13. Ahmed, N. N., Gries, H. L., Bellacosa, A., Chan, T. O. & Tsichlis, P. N. Transduction of interleukin-2 antiapoptotic and proliferative signals via Akt protein kinase. Proc. Natl Acad. Sci. USA 94, 3627–3632 (1997).
    Article CAS Google Scholar
  14. Brennan, P. et al. Phosphatidylinositol 3-kinase couples the interleukin-2 receptor to the cell cycle regulator E2F. Immunity 7, 679–689 (1997).
    Article CAS Google Scholar
  15. Medema, R. H., Kops, G. J., Bos, J. L. & Burgering, B. M. T. AFX-like forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27Kip1. Nature 404, 782–787 (2000).
    Article CAS Google Scholar
  16. Andjelkovic, M. et al. Role of translocation in the activation and function of protein kinase B. J. Biol. Chem. 272, 31515–31524 (1997).
    Article CAS Google Scholar
  17. Meier, R., Alessi, D. R., Cron, P., Andjelkovic, M. & Hemmings, B. A. Mitogenic activation, phosphorylation and nuclear translocation of protein kinase B. J. Biol. Chem. 272, 30491–30497 (1997).
    Article CAS Google Scholar
  18. Harper, J. W., Adami, G. R., Wei, N., Keyomarsi, K. & Elledge, S. J. The p21 Cdk-interacting protein Cip is a potent inhibitor of G1 cyclin-dependent kinase. Cell 75, 805–816 (1993).
    Article CAS Google Scholar
  19. El-Deiry, W. S. et al. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–825 (1993).
    Article CAS Google Scholar
  20. Noda, A., Ning, Y., Venable, S. F., Pereira-Smith, O. M. & Smith, J. R. Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen. Exp. Cell Res. 211, 90–98 (1994).
    Article CAS Google Scholar
  21. Sherr, C. J. & Roberts, J. M. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 9, 1149–1163 (1995).
    Article CAS Google Scholar
  22. Goubin, F. & Ducommun, B. Identification of binding domains on the p21Cip1 cyclin-dependent kinase inhibitor. Oncogene 10, 2281–2287 (1995).
    CAS PubMed Google Scholar
  23. Asada, M. et al. Apoptosis inhibitory activity of cytoplasmic p21Cip1/WAF1 in monocytic differentiation. EMBO J. 18, 1223–1234 (1999).
    Article CAS Google Scholar
  24. Yu, D. et al. Overexpression of ErbB2 blocks taxol-induced apoptosis by upregulation of p21Cip1, which inhibits p34Cdc2 kinase. Mol. Cell 2, 581–591 (1998).
    Article CAS Google Scholar
  25. Scott, M. T., Morrice, N. & Ball, K. L. Reversible phosphorylation at the C-terminal regulatory domain of p21Waf1/Cip1 modulates proliferating cell nuclear antigen binding. J. Biol. Chem. 275, 11529–11537 (2000).
    Article CAS Google Scholar
  26. Chen, J., Jackson, P. K., Kirschner, M. W. & Dutta, A. Separate domains of p21 involved in the inhibition of Cdk kinase and PCNA. Nature 374, 386–388 (1995).
    Article CAS Google Scholar
  27. Porter, A. G. Protein translocation in apoptosis. Trends Cell Biol. 9, 394–401 (1999).
    Article CAS Google Scholar
  28. Diehl, J. A., Cheng, M., Roussel, M. F. & Sherr, C. J. Glycogen synthase kinase-3β regulates cyclin D1 proteolysis and subcellular localization. Genes Dev. 12, 3499 (1998).
    Article CAS Google Scholar
  29. Shao, R. et al. Inhibition of nuclear factor-kB activity is involved in E1A-mediated sensitization of radiation-induced apoptosis. J. Biol. Chem. 272, 32739–32742 (1997).
    Article CAS Google Scholar
  30. Van der Geer, P. & Hunter, T. Phosphopeptide mapping and phosphoamino acid analysis by electrophoresis and chromatography on thin-layer cellulose plates. Electrophoresis 15, 544–554 (1994).
    Article CAS Google Scholar
  31. Gatti, A. & Traugh, T. A. A two-dimensional peptide gel electrophoresis system for phosphopeptide mapping and amino acid sequencing. Anal. Biochem. 266, 198–204 (1999).
    Article CAS Google Scholar

Download references