Structural basis for co-stimulation by the human CTLA-4/B7-2 complex (original) (raw)
References
Oosterwegel, M. A., Greenwald, R. J., Mandelbrot, D. A., Lorsbach, R. B. & Sharpe, A. H. CTLA-4 and T cell activation. Curr. Opin. Immunol.11, 294–300 (1999). ArticleCAS Google Scholar
Najafian, N. & Sayegh, M. H. CTLA4-Ig: a novel immunosuppressive agent. Expert Opin. Investig. Drugs9, 2147–2157 (2000). ArticleCAS Google Scholar
Garcia, K. C., Teyton, L. & Wilson, I. A. Structural basis of T cell recognition. Annu. Rev. Immunol.17, 369–397 (1999). ArticleCAS Google Scholar
Mastellar, E. L., Chuang, E., Mullen, A. C., Reiner, S. L. & Thompson, C. B. Structural analysis of CTLA-4 function in vivo. J. Immunol.164, 5319–5327 (2000). Article Google Scholar
Bork, P., Holm, L. & Sander, C. The immunoglobulin fold. Structural classification, sequence patterns and common core. J. Mol. Biol.242, 309–320 (1994). CAS Google Scholar
Ostrov, D. A., Shi, W., Schwartz, J. -C. D., Almo, S. C. & Nathenson, S. G. Structure of murine CTLA-4 and its role in modulating T cell responsiveness. Science290, 816–819 (2000). ArticleADSCAS Google Scholar
Metzler, W. J. et al. Solution structure of human CTLA-4 and delineation of a CD80/CD86 binding site conserved in CD28. Nature Struct. Biol.4, 527–531 (1997). ArticleCAS Google Scholar
Ikemizu, S. et al. Structure and dimerization of a soluble form of B7-1. Immunity12, 51–60 (2000). ArticleCAS Google Scholar
Wang, J. H. et al. Structure of a heterophilic adhesion complex between the human CD2 and CD58 (LFA-3) counterreceptors. Cell97, 791–803 (1999). ArticleCAS Google Scholar
Shapiro, L. et al. Structural basis of cell–cell adhesion by cadherins. Nature374, 327–337 (1995). ArticleADSCAS Google Scholar
Morton, P. A. et al. Differential effects of CTLA-4 substitutions on the binding of human CD80 (B7-1) and CD86 (B7-2). J. Immunol.156, 1047–1054 (1996). CASPubMed Google Scholar
Peach, R. J. et al. Both extracellular immunoglobulin-like domains of CD80 contain residues critical for binding T cell surface receptors CTLA-4 and CD28. J. Biol. Chem.270, 21181–21187 (1995). ArticleCAS Google Scholar
Peach, R. J. et al. Complementarity determining region 1 (CDR1)- and CDR3 analogous regions in CTLA-4 and CD28 determine the binding to B7-1. J. Exp. Med.180, 2049–2058 (1994). ArticleCAS Google Scholar
Kariv, I., Truneh, A. & Sweet, R. W. Analysis of the site of interaction of CD28 with its counter-receptors CD80 and CD86 and correlation with function. J. Immunol.157, 29–38 (1996). CASPubMed Google Scholar
Truneh, A. et al. Differential recognition by CD28 of its cognate counter receptors CD80 (B7.1) and B70 (B7.2): analysis by site directed mutagenesis. Mol. Immunol.33, 321–334 (1996). ArticleCAS Google Scholar
Leahy, D. J., Axel, R. & Hendrickson, W. A. Crystal structure of a soluble form of the human T cell coreceptor CD8 at 2.6 resolution. Cell68, 1145–1162 (1992). ArticleCAS Google Scholar
Garcia, K. C. et al. An alphabeta T cell receptor structure at 2.5 A and its orientation in the TCR-MHC complex. Science274, 209–219 (1996). ArticleADSCAS Google Scholar
Kwong, P. D. et al. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature393, 648–659 (1998). ArticleADSCAS Google Scholar
Lindsten, T. et al. Characterization of CTLA-4 structure and expression on human T cells. J. Immunol.151, 3489–3499 (1993). CAS Google Scholar
Anton van der Merwe, P., Davis, S. J. & Dustin, M. L. Cytoskeletal polarization and redistribution of cell-surface molecules during T cell antigen recognition. Semin. Immunol.12, 5–21 (2000). ArticleCAS Google Scholar
Cunningham, B. C. et al. Dimerization of the extracellular domain of the human growth hormone receptor by a single hormone molecule. Science254, 821–825 (1991). ArticleADSCAS Google Scholar
Plotnikov, A. N., Schlessinger, J., Hubbard, S. R. & Mohammadi, M. Structural basis for FGF receptor dimerization and activation. Cell98, 641–650 (1999). ArticleCAS Google Scholar
Wilson, I. A. & Jolliffe, L. K. The structure, organization, activation and plasticity of the erythropoietin receptor. Curr. Opin. Struct. Biol.9, 696–704 (1999). ArticleCAS Google Scholar
Luo, R. Z. -T., Beniac, D. R., Fernandes, A., Yip, C. C. & Ottensmeyer, F. P. Quaternary structure of the insulin-insulin receptor complex. Science285, 1077–1080 (1999). ArticleCAS Google Scholar
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol.176, 307–326 (1997). Article Google Scholar
Brunger, A. T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta. Crystallogr. D54, 905–921 (1998). ArticleCAS Google Scholar
Jones, T. A., Cowan, S., Zou, J. Y. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991). Article Google Scholar
Laskowski, R. A., MacArthur, M. W. & Thornton, J. M. Validation of protein models derived from experiment. Curr. Opin. Struct. Biol.8, 631–639 (1998). ArticleCAS Google Scholar
Lawrence, M. C. & Colman, P. M. Shape complementarity at protein/protein interfaces. J. Mol. Biol.234, 946–950 (1993). ArticleCAS Google Scholar
Evans, S. V. SETOR: hardware-lighted three-dimensional solid model representations of macromolecules. J. Mol. Graph.11, 134–138 (1993). ArticleCAS Google Scholar
Barton, G. J. Protein multiple sequence alignment and flexible pattern matching. Methods Enzymol.183, 403–428 (1990). ArticleCAS Google Scholar
Holm, L. & Sander, C. Dali: a network tool for protein structure comparison. Trends Biochem. Sci.20, 478–480 (1995). ArticleCAS Google Scholar