A CaMK IV responsive RNA element mediates depolarization-induced alternative splicing of ion channels (original) (raw)

References

  1. Finkbeiner, S. & Greenberg, M. E. Ca2+ channel-regulated neuronal gene expression. J. Neurobiol. 37, 171– 189 (1998).
    Article CAS Google Scholar
  2. Coetzee, W. A. et al. Molecular diversity of K+ channels. Ann. N. Y. Acad. Sci. 868, 233– 285 (1999).
    Article ADS CAS Google Scholar
  3. Xie, J. & McCobb, D. P. Control of alternative splicing of potassium channels by stress hormones. Science 280, 443– 446 (1998).
    Article ADS CAS Google Scholar
  4. Hille, B. Ionic Channels of Excitable Membranes (Sinauer Associates, Sunderland, MA, 1992).
    Google Scholar
  5. Lingle, C. J., Solaro, C. R., Prakriya, M. & Ding, J. P. Calcium-activated potassium channels in adrenal chromaffin cells. Ion Channels 4, 261– 301 (1996).
    Article CAS Google Scholar
  6. Butler, A., Tsunoda, S., McCobb, D. P., Wei, A. & Salkoff, L. MSlo, a complex mouse gene encoding “maxi” calcium-activated potassium channels. Science 261, 221– 224 (1993).
    Article ADS CAS Google Scholar
  7. Lagrutta, A., Shen, K.-Z., North, R. A. & Adelman, J. P. Functional differences among alternatively spliced variants of Slowpoke, a Drosophila calcium-activated potassium channel. J. Biol. Chem. 269, 20347– 20351 (1994).
    CAS PubMed Google Scholar
  8. Tseng-Crank, J. et al. Cloning, expression, and distribution of functionally distinct Ca2+-activated K+ channel isoforms from human brain. Neuron 13, 1315– 1330 (1994).
    Article CAS Google Scholar
  9. Navaratnam, D. S., Bell, T. J., Tu, T. D., Cohen, E. L. & Oberholtzer, J. C. Differential distribution of Ca2+-activated K+ channel splice variants among hair cells along the tonotopic axis of the chick cochlea. Neuron 19, 1077– 1085 (1997).
    Article CAS Google Scholar
  10. Rosenblatt, K. P., Sun, Z.-P., Heller, S. & Hudspeth, A. J. Distribution of Ca2+-activated K+ channel isoforms along the tonotopic gradient of the chicken's cochlea. Neuron 19, 1061– 1075 (1997).
    Article CAS Google Scholar
  11. Jones, E. M. C., Gray-Keller, M. & Fettiplace, R. The role of Ca2+-activated K+ channel spliced variants in the tonotopic organization of the turtle cochlea. J. Physiol. (Cambridge) 518, 653– 665 (1999).
    Article CAS Google Scholar
  12. Saito, M., Nelson, C., Salkoff, L. & Lingle, C. J. A cysteine-rich domain defined by a novel exon in a Slo variant in rat adrenal chromaffin cells and PC12 cells. J. Biol. Chem. 272, 11710– 11717 (1997).
    Article CAS Google Scholar
  13. Ramanathan, K., Michael, T. H., Jiang, G.-J., Hiel, K. & Fuchs, P. A. A molecular mechanism for electrical tuning of cochlear hair cells. Science 283, 215– 217 (1999).
    Article CAS Google Scholar
  14. Shipston, M. J., Duncan, R. R., Clark, A. G., Antoni, F. A. & Tian, L. Molecular components of large conductance calcium-activated potassium (BK) channels in mouse pituitary corticotropes. Mol. Endocrinol. 13, 1728– 1737 (1999).
    Article CAS Google Scholar
  15. Ferrer, J., Wasson, J., Salkoff, L. & Permutt, M. A. Cloning of human pancreatic islet large conductance Ca2+-activated K+ channel (hSlo) cDNAs: Evidence for high levels of expression in pancreatic islets and identification of a flanking genetic marker. Diabetologia 39, 891– 898 (1996).
    Article CAS Google Scholar
  16. Soderling, T. R. The Ca2+-calmodulin-dependent protein kinase cascade. Trends Biochem. Sci. 24, 232– 236 (1999).
    Article CAS Google Scholar
  17. Modafferi, E. F. & Black, D. L. A complex intronic splicing enhancer from the c-src pre-mRNA activates inclusion of a heterologous exon. Mol. Cell. Biol. 17, 6537– 6545 (1997).
    Article CAS Google Scholar
  18. Sun, P., Lou, L. & Maurer, R. A. Regulation of activating transcription factor-1 and the cAMP response element-binding protein by Ca2+/calmodulin-dependent protein kinases type I, II, and IV. J. Biol. Chem. 271, 3066– 3073 (1996).
    Article CAS Google Scholar
  19. Sun, P., Enslen, H., Myung, P. S. & Maurer, R. A. Differential activation of CREB by Ca2+/calmodulin-dependent protein kinases type II and type IV involves phosphorylation of a site that negatively regulates activity. Genes Dev. 8, 2527– 2539 (1994).
    Article CAS Google Scholar
  20. Chatila, T., Anderson, K. A., Ho, N. & Means, A. R. A unique phosphorylation-dependent mechanism for the activation of Ca2+/calmodulin-dependent protein kinase type IV/GR. J. Biol. Chem. 271, 21542– 21548 (1996).
    Article CAS Google Scholar
  21. Miranti, C. K., Ginty, D. D., Huang, G., Chatila, T. & Greenberg, M. E. Calcium activates serum response factor-dependent transcription by a Ras- and Elk-1-independent mechanism that involves a Ca2+/calmodulin-dependent kinase. Mol. Cell. Biol. 15, 3672– 3684 (1995).
    Article CAS Google Scholar
  22. Dominski, Z. & Kole, R. Selection of splice sites in pre-mRNAs with short internal exons. Mol. Cell. Biol. 11, 6075– 6083 (1991).
    Article CAS Google Scholar
  23. Modafferi, E. F. & Black, D. L. Combinatorial control of a neuron-specific exon. RNA 5, 687– 706 (1999).
    Article CAS Google Scholar
  24. Lopez, A. J. Alternative splicing of pre-mRNA: developmental consequences and mechanisms of regulation. Annu. Rev. Genet. 32, 279– 305 (1998).
    Article CAS Google Scholar
  25. Smith, C. & Valcarcel, J. Alternative pre-mRNA splicing: the logic of combinatorial control. Trends Biochem. Sci. 25, 381– 388 (2000).
    Article CAS Google Scholar
  26. Zhang, L., Ashiya, M., Sherman, T. G. & Grabowski, P. J. Essential nucleotides direct neuron-specific splicing of gamma-2 pre-mRNA. RNA 2, 682– 698 (1996).
    CAS PubMed PubMed Central Google Scholar
  27. Zhang, L., Liu, W. & Grabowski, P. J. Coordinate repression of a trio of neuron-specific splicing events by the splicing regulator PTB. RNA 5, 117– 130 (1999).
    Article CAS Google Scholar
  28. Chou, M.-Y., Underwood, J. G., Nikolic, J. M., Luu, M. H. T. & Black, D. L. Multisite RNA binding and release of polypyrimidine tract binding protein during the regulation of c_-src_ neural-specific splicing. Mol. Cell 5, 949– 957 (2000).
    Article CAS Google Scholar
  29. Ahn, S., Ginty, D. D. & Linden, D. J. A late phase of cerebellar long-term depression requires activation of CaMKIV and CREB. Neuron 23, 559– 568 (1999).
    Article CAS Google Scholar
  30. Spitzer, N. C. & Ribera, A. B. Development of electrical excitability in embryonic neurons: Mechanisms and roles. J. Neurobiol. 37, 190– 197 (1998).
    Article CAS Google Scholar

Download references