A CaMK IV responsive RNA element mediates depolarization-induced alternative splicing of ion channels (original) (raw)
References
Finkbeiner, S. & Greenberg, M. E. Ca2+ channel-regulated neuronal gene expression. J. Neurobiol.37, 171– 189 (1998). ArticleCAS Google Scholar
Coetzee, W. A. et al. Molecular diversity of K+ channels. Ann. N. Y. Acad. Sci.868, 233– 285 (1999). ArticleADSCAS Google Scholar
Xie, J. & McCobb, D. P. Control of alternative splicing of potassium channels by stress hormones. Science280, 443– 446 (1998). ArticleADSCAS Google Scholar
Hille, B. Ionic Channels of Excitable Membranes (Sinauer Associates, Sunderland, MA, 1992). Google Scholar
Lingle, C. J., Solaro, C. R., Prakriya, M. & Ding, J. P. Calcium-activated potassium channels in adrenal chromaffin cells. Ion Channels4, 261– 301 (1996). ArticleCAS Google Scholar
Butler, A., Tsunoda, S., McCobb, D. P., Wei, A. & Salkoff, L. MSlo, a complex mouse gene encoding “maxi” calcium-activated potassium channels. Science261, 221– 224 (1993). ArticleADSCAS Google Scholar
Lagrutta, A., Shen, K.-Z., North, R. A. & Adelman, J. P. Functional differences among alternatively spliced variants of Slowpoke, a Drosophila calcium-activated potassium channel. J. Biol. Chem.269, 20347– 20351 (1994). CASPubMed Google Scholar
Tseng-Crank, J. et al. Cloning, expression, and distribution of functionally distinct Ca2+-activated K+ channel isoforms from human brain. Neuron13, 1315– 1330 (1994). ArticleCAS Google Scholar
Navaratnam, D. S., Bell, T. J., Tu, T. D., Cohen, E. L. & Oberholtzer, J. C. Differential distribution of Ca2+-activated K+ channel splice variants among hair cells along the tonotopic axis of the chick cochlea. Neuron19, 1077– 1085 (1997). ArticleCAS Google Scholar
Rosenblatt, K. P., Sun, Z.-P., Heller, S. & Hudspeth, A. J. Distribution of Ca2+-activated K+ channel isoforms along the tonotopic gradient of the chicken's cochlea. Neuron19, 1061– 1075 (1997). ArticleCAS Google Scholar
Jones, E. M. C., Gray-Keller, M. & Fettiplace, R. The role of Ca2+-activated K+ channel spliced variants in the tonotopic organization of the turtle cochlea. J. Physiol. (Cambridge)518, 653– 665 (1999). ArticleCAS Google Scholar
Saito, M., Nelson, C., Salkoff, L. & Lingle, C. J. A cysteine-rich domain defined by a novel exon in a Slo variant in rat adrenal chromaffin cells and PC12 cells. J. Biol. Chem.272, 11710– 11717 (1997). ArticleCAS Google Scholar
Ramanathan, K., Michael, T. H., Jiang, G.-J., Hiel, K. & Fuchs, P. A. A molecular mechanism for electrical tuning of cochlear hair cells. Science283, 215– 217 (1999). ArticleCAS Google Scholar
Shipston, M. J., Duncan, R. R., Clark, A. G., Antoni, F. A. & Tian, L. Molecular components of large conductance calcium-activated potassium (BK) channels in mouse pituitary corticotropes. Mol. Endocrinol.13, 1728– 1737 (1999). ArticleCAS Google Scholar
Ferrer, J., Wasson, J., Salkoff, L. & Permutt, M. A. Cloning of human pancreatic islet large conductance Ca2+-activated K+ channel (hSlo) cDNAs: Evidence for high levels of expression in pancreatic islets and identification of a flanking genetic marker. Diabetologia39, 891– 898 (1996). ArticleCAS Google Scholar
Soderling, T. R. The Ca2+-calmodulin-dependent protein kinase cascade. Trends Biochem. Sci.24, 232– 236 (1999). ArticleCAS Google Scholar
Modafferi, E. F. & Black, D. L. A complex intronic splicing enhancer from the c-src pre-mRNA activates inclusion of a heterologous exon. Mol. Cell. Biol.17, 6537– 6545 (1997). ArticleCAS Google Scholar
Sun, P., Lou, L. & Maurer, R. A. Regulation of activating transcription factor-1 and the cAMP response element-binding protein by Ca2+/calmodulin-dependent protein kinases type I, II, and IV. J. Biol. Chem.271, 3066– 3073 (1996). ArticleCAS Google Scholar
Sun, P., Enslen, H., Myung, P. S. & Maurer, R. A. Differential activation of CREB by Ca2+/calmodulin-dependent protein kinases type II and type IV involves phosphorylation of a site that negatively regulates activity. Genes Dev.8, 2527– 2539 (1994). ArticleCAS Google Scholar
Chatila, T., Anderson, K. A., Ho, N. & Means, A. R. A unique phosphorylation-dependent mechanism for the activation of Ca2+/calmodulin-dependent protein kinase type IV/GR. J. Biol. Chem.271, 21542– 21548 (1996). ArticleCAS Google Scholar
Miranti, C. K., Ginty, D. D., Huang, G., Chatila, T. & Greenberg, M. E. Calcium activates serum response factor-dependent transcription by a Ras- and Elk-1-independent mechanism that involves a Ca2+/calmodulin-dependent kinase. Mol. Cell. Biol.15, 3672– 3684 (1995). ArticleCAS Google Scholar
Dominski, Z. & Kole, R. Selection of splice sites in pre-mRNAs with short internal exons. Mol. Cell. Biol.11, 6075– 6083 (1991). ArticleCAS Google Scholar
Modafferi, E. F. & Black, D. L. Combinatorial control of a neuron-specific exon. RNA5, 687– 706 (1999). ArticleCAS Google Scholar
Lopez, A. J. Alternative splicing of pre-mRNA: developmental consequences and mechanisms of regulation. Annu. Rev. Genet.32, 279– 305 (1998). ArticleCAS Google Scholar
Smith, C. & Valcarcel, J. Alternative pre-mRNA splicing: the logic of combinatorial control. Trends Biochem. Sci.25, 381– 388 (2000). ArticleCAS Google Scholar
Zhang, L., Ashiya, M., Sherman, T. G. & Grabowski, P. J. Essential nucleotides direct neuron-specific splicing of gamma-2 pre-mRNA. RNA2, 682– 698 (1996). CASPubMedPubMed Central Google Scholar
Zhang, L., Liu, W. & Grabowski, P. J. Coordinate repression of a trio of neuron-specific splicing events by the splicing regulator PTB. RNA5, 117– 130 (1999). ArticleCAS Google Scholar
Chou, M.-Y., Underwood, J. G., Nikolic, J. M., Luu, M. H. T. & Black, D. L. Multisite RNA binding and release of polypyrimidine tract binding protein during the regulation of c_-src_ neural-specific splicing. Mol. Cell5, 949– 957 (2000). ArticleCAS Google Scholar
Ahn, S., Ginty, D. D. & Linden, D. J. A late phase of cerebellar long-term depression requires activation of CaMKIV and CREB. Neuron23, 559– 568 (1999). ArticleCAS Google Scholar
Spitzer, N. C. & Ribera, A. B. Development of electrical excitability in embryonic neurons: Mechanisms and roles. J. Neurobiol.37, 190– 197 (1998). ArticleCAS Google Scholar