Walker, B. D. et al. HIV-specific cytotoxic T lymphocytes in seropositive individuals. Nature328, 345–348 (1987). ADSCASPubMed Google Scholar
Plata, F. et al. AIDS virus specific cytotoxic T lymphocytes in lung disorders. Nature328, 348–351 (1987). ADSCASPubMed Google Scholar
Ogg, G. S. et al. Quantitation of HIV-1-specific cytotoxic T lymphocytes and plasma viral RNA load. Science279, 2103–2106 (1998). ADSCASPubMed Google Scholar
Schmitz, J. E. et al. Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science283, 857–860 (1999). ADSCASPubMed Google Scholar
Jin, X. et al. Dramatic rise in plasma viremia after CD8(+) T cell depletion in simian immunodeficiency virus-infected macaques. J. Exp. Med.189, 991–998 (1999). CASPubMedPubMed Central Google Scholar
Yang, O. O. et al. Suppression of human immunodeficiency virus type 1 replication by CD8+ cells: evidence for HLA class I-restricted triggering of cytolytic and noncytolytic mechanisms. J. Virol.71, 3120–3128 (1997). CASPubMedPubMed Central Google Scholar
Phillips, R. E. et al. Human immunodeficiency virus genetic variation that can escape cytotoxic T cell recognition. Nature354, 453–459 (1991). ADSCASPubMed Google Scholar
Evans, D. T. et al. Virus-specific cytotoxic T-lymphocyte responses select for amino-acid variation in simian immunodeficiency virus Env and Nef. Nature Med.5, 1270–1276 (1999). CASPubMed Google Scholar
Carrington, M. et al. HLA and HIV-1: heterozygote advantage and B*35-Cw*04 disadvantage. Science283, 1748–1752 (1999). ADSCASPubMed Google Scholar
Kaslow, R. A. et al. Influence of combinations of human major histocompatibility complex genes on the course of HIV-1 infection. Nature Med.2, 405–411 (1996). CASPubMed Google Scholar
Riddell, S. R. & Greenberg, P. D. Principles for adoptive T cell therapy of human viral diseases. Annu. Rev. Immunol.13, 545–586 (1995). CASPubMed Google Scholar
Koup, R. A. et al. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J. Virol.68, 4650–4655 (1994). CASPubMedPubMed Central Google Scholar
Borrow, P., Lewicki, H., Hahn, B. H., Shaw, G. M. & Oldstone, M. B. Virus-specific CD8+ cytotoxic T-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection. J. Virol.68, 6103–6110 (1994). CASPubMedPubMed Central Google Scholar
Wilson, J. D. et al. Direct visualization of HIV-1-specific cytotoxic T lymphocytes during primary infection. AIDS14, 225–233 (2000). MathSciNetCASPubMed Google Scholar
Kuroda, M. J. et al. Emergence of CTL coincides with clearance of virus during primary simian immunodeficiency virus infection in rhesus monkeys. J. Immunol.162, 5127–5133 (1999). CASPubMed Google Scholar
Callan, M. F. C. et al. Large clonal expansions of CD8+ T cells in acute infectious mononucleosis. Nature Med.2, 205–211 (1996). Google Scholar
Callan, M. F. et al. CD8(+) T-cell selection, function, and death in the primary immune response in vivo. J. Clin. Invest.106, 1251–1261 (2000). CASPubMedPubMed Central Google Scholar
Hanke, T. et al. Effective induction of simian immunodeficiency virus-specific cytotoxic T lymphocytes in macaques by using a multiepitope gene and DNA prime-modified vaccinia virus Ankara boost vaccination regimen. J. Virol.73, 7524–7532 (1999). CASPubMedPubMed Central Google Scholar
Moskophidis, D., Lechner, F., Pircher, H. & Zinkernagel, R. M. Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells. Nature362, 758–761 (1993). ADSCASPubMed Google Scholar
Pantaleo, G. et al. Major expansion of CD8+ T cells with a predominant Vb usage during the primary immune response to HIV. Nature370, 463–467 (1994). ADSCASPubMed Google Scholar
Pantaleo, G. et al. The qualitative nature of the primary immune response to HIV infection is a prognosticator of disease progression independent of the initial level of plasma viremia. Proc. Natl Acad. Sci. USA94, 254–258 (1997). ADSCASPubMedPubMed Central Google Scholar
Altman, J. et al. Direct visualization and phenotypic analysis of virus-specific T lymphocytes in HIV-infected individuals. Science274, 94–96 (1996). ADSCASPubMed Google Scholar
Kuroda, M. J. et al. Comparative analysis of cytotoxic T lymphocytes in lymph nodes and peripheral blood of simian immunodeficiency virus-infected rhesus monkeys. J. Virol.73, 1573–1579 (1999). CASPubMedPubMed Central Google Scholar
Meyaard, L. et al. Programmed death of T cells in HIV-1 infection. Science257, 217–219 (1992). ADSCASPubMed Google Scholar
Hazenberg, M. D. et al. Increased cell division but not thymic dysfunction rapidly affects the T-cell receptor excision circle content of the naive T cell population in HIV-1 infection. Nature Med.6, 1036–1042 (2000). CASPubMed Google Scholar
Lewis, D. E., Tang, D. S., Adu-Oppong, A., Schober, W. & Rodgers, J. R. Anergy and apoptosis in CD8+ T cells from HIV-infected persons. J. Immunol.153, 412–420 (1994). CASPubMed Google Scholar
Gray, C. M. et al. Frequency of class I HLA-restricted anti-HIV CD8+ T cells in individuals receiving highly active antiretroviral therapy (HAART). J. Immunol.162, 1780–1788 (1999). CASPubMed Google Scholar
Ogg, G. S. et al. Decay kinetics of human immunodeficiency virus-specific effector cytotoxic T lymphocytes after combination antiretroviral therapy. J. Virol.73, 797–800 (1999). CASPubMedPubMed Central Google Scholar
Kalams, S. A. et al. Levels of human immunodeficiency virus type 1-specific cytotoxic T-lymphocyte effector and memory responses decline after suppression of viremia with highly active antiretroviral therapy. J. Virol.73, 6721–6728 (1999). CASPubMedPubMed Central Google Scholar
Wilson, J. D. K. et al. Oligoclonal expansions of CD8(+) T cells in chronic HIV infection are antigen specific. J. Exp. Med.188, 785–790 (1998). CASPubMedPubMed Central Google Scholar
Kalams, S. A. et al. T cell receptor usage and fine specificity of human immunodeficiency virus 1-specific cytotoxic T lymphocyte clones: analysis of quasispecies recognition reveals a dominant response directed against a minor in vivo variant. J. Exp. Med.183, 1669–1679 (1996). CASPubMed Google Scholar
Moss, P. A. H. et al. Persistent high frequency of human immunodeficiency virus-specific cytotoxic T cells in peripheral blood of infected donors. Proc. Natl Acad. Sci. USA92, 5773–5777 (1995). ADSCASPubMedPubMed Central Google Scholar
Murali-Krishna, K. et al. Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity8, 177–187 (1998). CASPubMed Google Scholar
Butz, E. A. & Bevan, M. J. Massive expansion of antigen-specific CD8+ T cells during an acute virus infection. Immunity8, 167–175 (1998). CASPubMedPubMed Central Google Scholar
Gotch, F. M., Nixon, D. F., Alp, N., McMichael, A. J. & Borysiewicz, L. K. High frequency of memory and effector gag specific cytotoxic T lymphocytes in HIV seropositive individuals. Int. Immunol.2, 707–712 (1990). CASPubMed Google Scholar
Tan, L. C. et al. A re-evaluation of the frequency of CD8+ T cells specific for EBV in healthy virus carriers. J. Immunol.162, 1827–1835 (1999). CASPubMed Google Scholar
Carmichael, A., Jin, X., Sissons, P. & Borysiewicz, L. Quantitative analysis of the human immunodeficiency virus type 1 (HIV-1)-specific cytotoxic T lymphocyte (CTL) response at different stages of HIV-1 infection: differential CTL responses to HIV-1 and Epstein-Barr virus in late disease. J. Exp. Med.177, 249–256 (1993). CASPubMed Google Scholar
Dunbar, P. R. et al. Direct isolation, phenotyping and cloning of low-frequency antigen-specific cytotoxic T lymphocytes from peripheral blood. Curr. Biol.8, 413–416 (1998). CASPubMed Google Scholar
Pantaleo, G., Koenig, S., Baseler, M., Lane, H. C. & Fauci, A. S. Defective clonogenic potential of CD8+ T lymphocytes in patients with AIDS. Expansion in vivo of a nonclonogenic CD3+CD8+DR+CD25− T cell population. J. Immunol.144, 1696–1704 (1990). CASPubMed Google Scholar
Goulder, P. J. et al. Functionally inert HIV-specific cytotoxic T lymphocytes do not play a major role in chronically infected adults and children. J. Exp. Med.192, 1819–1832 (2000). CASPubMedPubMed Central Google Scholar
Kagi, D. et al. Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature369, 31–37 (1994). ADSCASPubMed Google Scholar
Guidotti, L. G. et al. Intracellular inactivation of the hepatitis B virus by cytotoxic T lymphocytes. Immunity4, 25–36 (1996). CASPubMed Google Scholar
Guidotti, L. G. et al. Viral clearance without destruction of infected cells during acute HBV infection. Science284, 825–829 (1999). ADSCASPubMed Google Scholar
Ramsay, A. J., Ruby, J. & Ramshaw, I. A. A case for cytokines as effector molecules in the resolution of virus infections. Immunol. Today14, 155–158 (1993). CASPubMed Google Scholar
Price, P. et al. Cytotoxic CD8+ T lymphocytes reactive with human immunodeficiency virus-1 produce granulocyte/macrophage colony-stimulating factor and variable amounts of interleukins 2, 3, and 4 following stimulation with the cognate epitope. Clin. Immunol. Immunopathol.74, 100–106 (1995). CASPubMed Google Scholar
Jassoy, C. et al. Human immunodeficiency virus type 1-specific cytotoxic T lymphocytes release gamma interferon, tumor necrosis factor alpha (TNF-alpha), and TNF-beta when they encounter their target antigens. J. Virol.67, 2844–2852 (1993). CASPubMedPubMed Central Google Scholar
Meylan, P. R., Guatelli, J. C., Munis, J. R., Richman, D. D. & Kornbluth, R. S. Mechanisms for the inhibition of HIV replication by interferons-α, -β, and -γ in primary human macrophages. Virology193, 138–148 (1993). CASPubMed Google Scholar
Emilie, D., Maillot, M. C., Nicolas, J. F., Fior, R. & Galanaud, P. Antagonistic effect of interferon-gamma on tat-induced transactivation of HIV long terminal repeat. J. Biol. Chem.267, 20565–20570 (1992). CASPubMed Google Scholar
Bollinger, R. C. et al. Cytokines from vaccine-induced HIV-1 specific cytotoxic T lymphocytes: effects on viral replication. AIDS Res. Hum. Retroviruses9, 1067–1077 (1993). CASPubMed Google Scholar
Harrer, T., Jassoy, C., Harrer, E., Johnson, R. P. & Walker, B. D. Induction of HIV-1 replication in a chronically infected T-cell line by cytotoxic T lymphocytes. J. Acquir. Immune Defic. Syndr.6, 865–871 (1993). CASPubMed Google Scholar
Wagner, L. et al. β-Chemokines are released from HIV-1-specific cytolytic T-cell granules complexed to proteoglycans. Nature391, 908–911 (1998). ADSCASPubMed Google Scholar
Price, D. A. et al. Antigen-specific release of β-chemokines by anti-HIV-1 cytotoxic T lymphocytes. Curr. Biol.8, 355–358 (1998). CASPubMed Google Scholar
Cocchi, F. et al. Identification of RANTES, MIP-1α, and MIP-1β as the major HIV-suppressive factors produced by CD8+ T cells. Science270, 1811–1815 (1995). ADSCASPubMed Google Scholar
Mackewicz, C. & Levy, J. A. CD8+ cell anti-HIV activity: nonlytic suppression of virus replication. AIDS Res. Hum. Retroviruses8, 1039–1050 (1992). CASPubMed Google Scholar
Levy, J. A., Mackewicz, C. E. & Barker, E. Controlling HIV pathogenesis: the role of noncytotoxic anti-HIV response of CD8+ T cells. Immunol. Today17, 217–224 (1996). CASPubMed Google Scholar
Copeland, K., McKay, P. J. & Rosenthal, K. L. Suppression of activation of the HIV LTR by CD8+ cells is not lentivirus specific. AIDS Res. Hum. Retroviruses11, 1321–1325 (1995). CASPubMed Google Scholar
Yang, O. O. et al. Efficient lysis of human immunodeficiency virus type 1-infected cells by cytotoxic T lymphocytes. J. Virol.70, 5799–5806 (1996). CASPubMedPubMed Central Google Scholar
Collins, K. L., Chen, B. K., Kalams, S. A., Walker, B. D. & Baltimore, D. HIV-1 Nef protein protects infected primary cells against killing by cytotoxic T lymphocytes. Nature391, 397–401 (1998). ADSCASPubMed Google Scholar
Klenerman, P. et al. Cytotoxic T lymphocytes and viral turnover in HIV type 1 infection. Proc. Natl Acad. Sci. USA93, 15323–15328 (1996). ADSCASPubMedPubMed Central Google Scholar
Shankar, P., Xu, Z. & Lieberman, J. Viral-specific cytotoxic T lymphocytes lyse human immunodeficiency virus-infected primary T lymphocytes by the granule exocytosis pathway. Blood94, 3084–3093 (1999). CASPubMed Google Scholar
Hadida, F. et al. Cutting edge: RANTES regulates Fas ligand expression and killing by HIV-specific CD8 cytotoxic T cells. J. Immunol.163, 1105–1109 (1999). CASPubMed Google Scholar
Zajac, A. J. et al. Viral immune evasion due to persistence of activated T cells without effector function. J. Exp. Med.188, 2205–2213 (1998). CASPubMedPubMed Central Google Scholar
Kalams, S. A. & Walker, B. D. The critical need for CD4 help in maintaining effective cytotoxic T lymphocyte responses. J. Exp. Med.188, 2199–2204 (1998). CASPubMedPubMed Central Google Scholar
Appay, V. et al. HIV-specific CD8+ T-cells produce antiviral cytokines but are impaired in cytolytic function. J. Exp. Med.192, 63–75 (2000). CASPubMedPubMed Central Google Scholar
Andersson, J. et al. Perforin is not co-expressed with granzyme A within cytotoxic granules in CD8 T lymphocytes present in lymphoid tissue during chronic HIV infection. AIDS13, 1295–1303 (1999). CASPubMed Google Scholar
Trimble, L. A. & Lieberman, J. Circulating CD8 T lymphocytes in human immunodeficiency virus-infected individuals have impaired function and downmodulate CD3ζ, the signaling chain of the T-cell receptor complex. Blood91, 585–594 (1998). CASPubMed Google Scholar
Hamann, D. et al. Phenotypic and functional separation of memory and effector human CD8+ T cells. J. Exp. Med.186, 1407–1418 (1997). CASPubMedPubMed Central Google Scholar
Champagne, P. et al. Skewed maturation of memory HIV-1 specific CD8 T lymphocytes. Nature410, 106–111(2001). ADSCASPubMed Google Scholar
Clerici, M. et al. Detection of three distinct patterns of T helper cell dysfunction in asymptomatic, human immunodeficiency virus-seropositive patients. Independence of CD4+ cell numbers and clinical staging. J. Clin. Invest.84, 1892–1899 (1989). CASPubMedPubMed Central Google Scholar
Rosenberg, E. S. et al. Vigorous HIV-1-specific CD4+ T-cell responses associated with control of viremia. Science278, 1447–1450 (1997). ADSCASPubMed Google Scholar
Oxenius, A. et al. Early highly active antiretroviral therapy for acute HIV-1 infection preserves immune function of CD8+ and CD4+ T lymphocytes. Proc. Natl Acad. Sci. USA97, 3382–3387 (2000). ADSCASPubMedPubMed Central Google Scholar
Pitcher, C. J. et al. HIV-1-specific CD4+ T cells are detectable in most individuals with active HIV-1 infection, but decline with prolonged viral suppression. Nature Med.5, 518–525 (1999). CASPubMed Google Scholar
Geijtenbeek, T. B. et al. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell100, 587–597 (2000). CASPubMed Google Scholar
Pope, M., Gezelter, S., Gallo, N., Hoffman, L. & Steinman, R. M. Low levels of HIV-1 infection in cutaneous dendritic cells promote extensive viral replication upon binding to memory CD4+ T cells. J. Exp. Med.182, 2045–2056 (1995). CASPubMed Google Scholar
Rosenberg, E. S. et al. Immune control of HIV-1 after early treatment of acute infection. Nature407, 523–526 (2000). ADSCASPubMed Google Scholar
Ridge, J. P., Di Rosa, F. & Matzinger, P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature393, 474–478 (1998). ADSCASPubMed Google Scholar
Walter, E. A. et al. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N. Engl. J. Med.333, 1038–1044 (1995). CASPubMed Google Scholar
Brodie, S. J. et al. In vivo migration and function of transferred HIV-1-specific cytotoxic T cells. Nature Med.5, 34–41 (1999). CASPubMed Google Scholar
Tan, R. et al. Rapid death of adoptively transferred T cells in acquired immunodeficiency syndrome. Blood93, 1506–1510 (1999). CASPubMed Google Scholar
Kanazawa, S., Okamoto, T. & Peterlin, B. M. Tat competes with CIITA for the binding to P-TEFb and blocks the expression of MHC class II genes in HIV infection. Immunity12, 61–70 (2000). CASPubMed Google Scholar
Wodarz et al. Proc. R. Soc. Lond. B (in the press).
McMichael, A. J. et al. Memory CD8+ T cells in HIV infection. Phil. Trans. R. Soc. Lond. B355, 363–367 (2000). CAS Google Scholar
Koenig, S. et al. Transfer of HIV-1 specific cytotoxic T lymphocytes to an AIDS patient leads to selection for mutant HIV variants and subsequent disease progression. Nature Med.1, 330–336 (1995). CASPubMed Google Scholar
Borrow, P. et al. Antiviral pressure exerted by HIV-1-specific cytotoxic T lymphocytes (CTLs) during primary infection demonstrated by rapid selection of CTL escape virus. Nature Med.3, 205–211 (1997). CASPubMed Google Scholar
Price, D. A. et al. Positive selection of HIV-1 cytotoxic T lymphocyte escape variants during primary infection. Proc. Natl Acad. Sci. USA94, 1890–1895 (1997). ADSCASPubMedPubMed Central Google Scholar
Goulder, P. J. et al. Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS. Nature Med.3, 212–217 (1997). CASPubMed Google Scholar
Kelleher, A. D. et al. Clustered mutations in HIV-1 gag are consistently required for escape from HLA-B27-restricted CTL responses. J. Exp. Med.193, 375–386 (2001). CASPubMedPubMed Central Google Scholar
Berthet-Colominas, C. et al. Head-to-tail dimers and interdomain flexibility revealed by the crystal structure of HIV-1 capsid protein (p24) complexed with a monoclonal antibody Fab. EMBO J.18, 1124–1136 (1999). CASPubMedPubMed Central Google Scholar
Jones, I. M. & Morikawa, Y. The molecular basis of HIV capsid assembly. Rev. Med. Virol.8, 87–95 (1998). CASPubMed Google Scholar
Zhang, W. H., Hockley, D. J., Nermut, M. V. & Jones, I. M. Functional consequences of mutations in HIV-1 Gag p55 selected by CTL pressure. Virology203, 101–105 (1994). CASPubMed Google Scholar
Goulder, P. J. R. et al. Patterns of immunodominance in HIV-1-specific cytotoxic T lymphocyte responses in two human histocompatibility leukocyte antigens (HLA)—identical Siblings with HLA-A*0201 are influenced by epitope mutation. J. Exp. Med.185, 1423–1433 (1997). CASPubMedPubMed Central Google Scholar
Allen, T. M. et al. Tat-specific cytotoxic T lymphocytes select for SIV escape variants during resolution of primary viraemia. Nature407, 386–390 (2000). ADSCASPubMed Google Scholar
Nowak, M. A. et al. Antigenic oscillations and shifting immunodominance in HIV-1 infections. Nature375, 606–611 (1995). ADSCASPubMed Google Scholar
Janssens, W., Buve, A. & Nkengasong, J. N. The puzzle of HIV-1 subtypes in Africa. AIDS11, 705–712 (1997). CASPubMed Google Scholar
Le Gall, S. et al. Nef interacts with the mu subunit of clathrin adaptor complexes and reveals a cryptic sorting signal in MHC I molecules. Immunity8, 483–495 (1998). CASPubMed Google Scholar
Cohen, G. B. et al. The selective downregulation of class I major histocompatibility complex proteins by HIV-1 protects HIV-infected cells from NK cells. Immunity10, 661–671 (1999). CASPubMed Google Scholar
Albert, M. L., Sauter, B. & Bhardwaj, N. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature392, 86–89 (1998). ADSCASPubMed Google Scholar
Xu, X.-N. et al. Evasion of CTL responses by nef-dependent induction of Fas ligand expression on SIV-infected cells. J. Exp. Med.186, 7–16 (1997). CASPubMedPubMed Central Google Scholar
Xu, X. N. et al. Induction of Fas ligand expression by HIV involves the interaction of Nef with the T cell receptor ζ chain. J. Exp. Med.189, 1489–1496 (1999). CASPubMedPubMed Central Google Scholar
McMichael, A. J. & Bangham, C. R. M. (eds) Semin. Virol.7, 1 (1996). Google Scholar
Connor, R. I. et al. Immunological and virological analyses of persons infected by human immunodeficiency virus type 1 while participating in trials of recombinant gp120 subunit vaccines. J. Virol.72, 1552–1576 (1998). CASPubMedPubMed Central Google Scholar
Barouch, D. H. et al. Augmentation of immune responses to HIV-1 and simian immunodeficiency virus DNA vaccines by IL-2/Ig plasmid administration in rhesus monkeys. Proc. Natl Acad. Sci. USA97, 4192–4197 (2000). ADSCASPubMedPubMed Central Google Scholar
Tanchot, C. et al. Modifications of CD8+ T cell function during in vivo memory or tolerance induction. Immunity8, 581–590 (1998). CASPubMed Google Scholar
Kent, S. J. et al. Enhanced T-cell immunogenicity and protective efficacy of a human immunodeficiency virus type 1 vaccine regimen consisting of consecutive priming with DNA and boosting with recombinant fowlpox virus. J. Virol.72, 10180–10188 (1998). CASPubMedPubMed Central Google Scholar
Gallimore, A. et al. Early suppression of SIV replication by CD8+ nef-specific cytotoxic T cells in vaccinated macaques. Nature Med.1, 1167–1173 (1995). CASPubMed Google Scholar
Rowland-Jones, S. L. et al. Cytotoxic T cell responses to multiple conserved HIV epitopes in HIV-resistant prostitutes in Nairobi. J. Clin. Invest.102, 1758–1765 (1998). CASPubMedPubMed Central Google Scholar
Lifson, J. D. et al. Containment of simian immunodeficiency virus infection: cellular immune responses and protection from rechallenge following transient postinoculation antiretroviral treatment. J. Virol.74, 2584–2593 (2000). CASPubMedPubMed Central Google Scholar
Putkonen, P., Makitalo, B., Bottiger, D., Biberfeld, G. & Thorstensson, R. Protection of human immunodeficiency virus type 2-exposed seronegative macaques from mucosal simian immunodeficiency virus transmission. J. Virol.71, 4981–4984 (1997). CASPubMedPubMed Central Google Scholar
Allen, T. M. et al. Induction of AIDS virus-specific CTL activity in fresh, unstimulated peripheral blood lymphocytes from rhesus macaques vaccinated with a DNA prime/modified vaccinia virus Ankara boost regimen. J. Immunol.164, 4968–4978 (2000). CASPubMed Google Scholar
Mortara, L. et al. Selection of virus variants and emergence of virus escape mutants after immunization with an epitope vaccine. J. Virol.72, 1403–1410 (1998). CASPubMedPubMed Central Google Scholar