Somatic activation of the K-ras oncogene causes early onset lung cancer in mice (original) (raw)
References
Bos, J. L. ras oncogenes in human cancer: a review. Cancer Res.49, 4682–4689 (1989); erratum Cancer Res50, 1352 (1990). CASPubMed Google Scholar
Khosravi-Far, R. & Der, C. J. The Ras signal transduction pathway. Cancer Met. Rev.13, 67–89 (1994). ArticleCAS Google Scholar
Bos, J. L. et al. Prevalence of ras gene mutations in human colorectal cancers. Nature327, 293–297 (1987). ArticleADSCAS Google Scholar
Mills, N. E., Fishman, C. L., Rom, W. N., Dubin, N. & Jacobson, D. R. Increased prevalence of K-ras oncogene mutations in lung adenocarcinoma. Cancer Res.55, 1444–1447 (1995). CASPubMed Google Scholar
Pellegata, N. S. et al. K-ras and p53 gene mutations in pancreatic cancer: ductal and nonductal tumors progress through different genetic lesions. Cancer Res.54, 1556–1560 (1994). CASPubMed Google Scholar
Vogelstein, B. et al. Genetic alterations during colorectal-tumor development. N. Engl. J. Med.319, 525–532 (1988). ArticleCAS Google Scholar
Adams, J. M. & Cory, S. Transgenic models of tumor development. Science254, 1161–1167 (1991). ArticleADSCAS Google Scholar
Hasty, P., Ramirez-Solis, R., Krumlauf, R. & Bradley, A. Introduction of a subtle mutation into the Hox-2.6 locus in embryonic stem cells. Nature350, 243–246 (1991); erratum Nature53, 94 (1991). ArticleADSCAS Google Scholar
Johnson, L. et al. K-ras is an essential gene in the mouse with partial functional overlap with N-ras. Genes Dev.11, 2468–2481 (1997); erratum Genes Dev.11, 3277 (1997). ArticleCAS Google Scholar
Seperack, P. K., Strobel, M. C., Corrow, D. J., Jenkins, N. A. & Copeland, N. G. Somatic and germ-line reverse mutation rates of the retrovirus-induced dilute coat-color mutation of DBA mice. Proc. Natl Acad. Sci. USA85, 189–192 (1988). ArticleADSCAS Google Scholar
Thrane, E. V. et al. Differential distribution and increased levels of ras proteins during lung development. Exp. Lung Res.23, 35–49 (1997). ArticleCAS Google Scholar
Nakanishi, K. Alveolar epithelial hyperplasia and adenocarcinoma of the lung. Arch. Pathol. Lab. Med.114, 363–368 (1990). CASPubMed Google Scholar
Kitamura, H., Kameda, Y., Ito, T. & Hayashi, H. Atypical adenomatous hyperplasia of the lung. Implications for the pathogenesis of peripheral lung adenocarcinoma. Am. J. Clin. Pathol.111, 610–622 (1999). ArticleCAS Google Scholar
Linnoila, R. I., Mulshine, J. L., Steinberg, S. M. & Gazdar, A. F. Expression of surfactant-associated protein in non-small-cell lung cancer: a discriminant between biologic subsets. J. Natl Cancer Inst. Monogr.13, 61–66 (1992). Google Scholar
Pretlow, T. P. et al. Aberrant crypts: putative preneoplastic foci in human colonic mucosa. Cancer Res.51, 1564–1567 (1991). CASPubMed Google Scholar
Bos, J. L. The ras gene family and human carcinogenesis. Mutat. Res.195, 255–271 (1988). ArticleCAS Google Scholar
Finney, R. E. & Bishop, J. M. Predisposition to neoplastic transformation caused by gene replacement of H-ras1. Science260, 1524–1527 (1993). ArticleADSCAS Google Scholar
Bremner, R. & Balmain, A. Genetic changes in skin tumor progression: correlation between presence of a mutant ras gene and loss of heterozygosity on mouse chromosome 7. Cell61, 407–417 (1990). ArticleCAS Google Scholar
Yokota, J., Tsunetsugu-Yokota, Y., Battifora, H., Le Fevre, C. & Cline, M. J. Alterations of myc, myb, and rasHa proto-oncogenes in cancers are frequent and show clinical correlation. Science231, 261–265 (1986). ArticleADSCAS Google Scholar
Bonner, R. F. et al. Laser capture microdissection: molecular analysis of tissue. Science278, 1481–1483 (1997). ArticleADSCAS Google Scholar
Salgia, R. & Skarin, A. T. Molecular abnormalities in lung cancer. J. Clin. Oncol.16, 1207–1217 (1998). ArticleCAS Google Scholar
Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell88, 593–602 (1997). ArticleCAS Google Scholar
Tanaka, N. et al. Cellular commitment to oncogene-induced transformation or apoptosis is dependent on the transcription factor IRF-1. Cell77, 829–839 (1994). ArticleCAS Google Scholar
Jacks, T. et al. Tumor spectrum analysis in p53-mutant mice. Curr. Biol.4, 1–7 (1994). ArticleCAS Google Scholar
Tuveson, D. A. & Jacks, T. Modeling human lung cancer in mice: similarities and shortcomings. Oncogene18, 5318–5324 (1999). ArticleCAS Google Scholar
Yamashita, N., Minamoto, T., Ochiai, A., Onda, M. & Esumi, H. Frequent and characteristic K-ras activation in aberrant crypt foci of colon. Is there preference among K-ras mutants for malignant progression? Cancer75, 1527–1533 (1995). ArticleCAS Google Scholar
Moser, A. R., Pitot, H. C. & Dove, W. F. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science247, 322–324 (1990). ArticleADSCAS Google Scholar
Gibbs, J. B., Oliff, A. & Kohl, N. E. Farnesyltransferase inhibitors: Ras research yields a potential cancer therapeutic. Cell77, 175–178 (1994). ArticleCAS Google Scholar
Sebti, S. & Hamilton, A. D. Inhibitors of prenyl transferases. Curr. Opin. Oncol.9, 557–561 (1997). ArticleCAS Google Scholar
Lerner, E. C., Hamilton, A. D. & Sebti, S. M. Inhibition of Ras prenylation: a signaling target for novel anti-cancer drug design. Anticancer Drug Des.12, 229–238 (1997). CASPubMed Google Scholar