Scalable architecture in mammalian brains (original) (raw)

Nature volume 411, pages 189–193 (2001)Cite this article

Abstract

Comparison of mammalian brain parts has often focused on differences in absolute size1,2,3, revealing only a general tendency for all parts to grow together2. Attempts to find size-independent effects using body weight as a reference variable1 obscure size relationships owing to independent variation of body size4 and give phylogenies of questionable significance5. Here we use the brain itself as a size reference to define the cerebrotype, a species-by-species measure of brain composition. With this measure, across many mammalian taxa the cerebellum occupies a constant fraction of the total brain volume (0.13 ± 0.02), arguing against the hypothesis that the cerebellum acts as a computational engine principally serving the neocortex3. Mammalian taxa can be well separated by cerebrotype, thus allowing the use of quantitative neuroanatomical data to test evolutionary relationships. Primate cerebrotypes have progressively shifted and neocortical volume fractions have become successively larger in lemurs and lorises, New World monkeys, Old World monkeys, and hominoids, lending support to the idea that primate brain architecture has been driven by directed selection pressure4. At the same time, absolute brain size can vary over 100-fold within a taxon, while maintaining a relatively uniform cerebrotype. Brains therefore constitute a scalable architecture.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Jerison, H. J. Brain Size and the Evolution of Mind (American Museum of Natural History, New York, 1991).
    Google Scholar
  2. Finlay, B. L. & Darlington, R. B. Linked regularities in the development and evolution of mammalian brains. Science 268, 1578–1584 (1995).
    Article ADS CAS Google Scholar
  3. Barton, R. A. & Harvey, P. H. Mosaic evolution of brain structure in mammals. Nature 405, 1055–1058 (2000).
    Article ADS CAS Google Scholar
  4. Barton, R. A. & Dunbar, R. I. M. in Machiavellian Intelligence II (eds Whiten, A. W. & Byrne, R. W.) 240–263 (Cambridge Univ. Press, New York, 1992).
    Google Scholar
  5. Douglas, R. J. & Marcellus, D. The ascent of man: deductions based on a multivariate analysis of the brain. Brain Behav. Evol. 11, 179–213 (1975).
    Article CAS Google Scholar
  6. Stephan, H., Frahm, H. & Baron, G. New and revised data on volumes of brain structures in insectivores and primates. Folia Primatol. 35, 1–29 (1981).
    Article CAS Google Scholar
  7. Aiello, L. C. & Wheeler, P. The expensive-tissue hypothesis: the brain and digestive system in primate evolution. Curr. Anthropol. 36, 199–221 (1995).
    Article Google Scholar
  8. Airapet’yants, E. S. & Konstantinov, A. I. Echolocation in Animals (Keter, Jerusalem, 1973).
    Google Scholar
  9. Jansen, J. On the whale brain with special reference to the weight of the fin whale (Balaenoptera physalus). Norsk Hvalfangst-tidende 9, 480–486 (1952).
    Google Scholar
  10. Pilleri, G. Morphologie des gehirnes des “Southern Right Whale”. Acta Zool. 46, 245–272 (1964).
    Article Google Scholar
  11. Jansen, J. & Jansen, J. K. S. in The Biology of Marine Mammals (ed. Andersen, H. T.) 175–252 (Academic, New York, 1969).
    Google Scholar
  12. Ridgway, S. H. in The Bottlenosed Dolphin, Tursiops spp. (eds Leatherwood, J. S. & Reeves, R.) 69–97 (Academic, San Diego, 1989).
    Google Scholar
  13. Baron, G., Stephan, H. & Frahm, H. D. Comparative Neurobiology in Chiroptera: Macromorphology, Brain Structures, Tables, and Atlases (Birkhaeuser, Basel, 1996).
    Google Scholar
  14. Paulin, M. G. The role of the cerebellum in motor control and perception. Brain Behav. Evol. 41, 39–50 (1993).
    Article CAS Google Scholar
  15. Mouchaty, S. K., Gullberg, A., Janke, A. & Arnason, U. The phylogenetic position of the Talpidae within Eutheria based on analysis of complete mitochondrial sequences. Mol. Biol. Evol. 17, 60–67 (2000).
    Article CAS Google Scholar
  16. Purvis, A. A composite estimate of primate phylogeny. Phil. Trans. R. Soc. Lond. B 348, 405–421 (1995).
    Article ADS CAS Google Scholar
  17. Kinzey, W. G. New World Primates: Ecology, Evolution, and Behavior (Aldine de Gruyter, New York, 1997).
    Google Scholar
  18. Harvey, P. H. & Pagel, M. The Comparative Method in Evolutionary Biology (Oxford Univ. Press, Oxford, 1991).
    Google Scholar
  19. Gura, T. Bones, molecules...or both? Nature 406, 230–233 (2000).
    Article ADS CAS Google Scholar
  20. Xuan, S. et al. Winged helix transcription factor BF-1 is essential for the development of the cerebral hemispheres. Neuron 14, 1141–1152 (1995).
    Article CAS Google Scholar
  21. Kornack, D. R. & Rakic, P. Changes in cell-cycle kinetics during the development and evolution of primate neocortex. Proc. Natl Acad. Sci. USA 95, 1242–1246 (1998).
    Article ADS CAS Google Scholar
  22. Braitenberg, V. & Schüz, A. Cortex: Statistics and Geometry of Neuronal Connectivity (Springer, Berlin, 1998).
    Book Google Scholar
  23. Kruska, D. & Rohrs, M. Comparative-quantitative investigations on brains of feral pigs from the Galapagos Islands and of European domestic pigs. Z. Anat. Entwicklungsgesch 144, 61–73 (1974).
    Article CAS Google Scholar
  24. Meyer, J. A quantitative comparison of the parts of the brains of two Australian marsupials and some eutherian mammals. Brain Behav. Evol. 18, 60–71 (1981).
    Article CAS Google Scholar
  25. Pirlot, P. & Kamiya, T. Quantitative brain organization in anteaters (Edentata-Tubilidentata). J. Hirnforsch. 24, 677–689 (1983).
    CAS PubMed Google Scholar
  26. Fox, J. H. & Wilczynski, W. Allometry of major CNS divisions: towards a reevaluation of somatic brain–body scaling. Brain Behav. Evol. 28, 157–169 (1986).
    Article CAS Google Scholar
  27. Frahm, H. D., Rehkämper, G. & Nevo, E. Brain structure volumes in the mole rat, Spalax ehrenbergi (Spalacidae, Rodentia) in comparison to the rat and subterrestrial insectivores. J. Brain Res. 38, 209–222 (1997).
    CAS Google Scholar
  28. Reep, R. L. & O'Shea, T. J. Regional brain morphometry and lissencephaly in the Sirenia. Brain Behav. Evol. 35, 185–194 (1990).
    Article CAS Google Scholar
  29. Pirlot, P. & Kamiya, T. Qualitative and quantitative brain morphology in the Sirenian Dugong dugong Erxl. Z. Zool. Syst. Evol.-forsch. 23, 147–155 (1985).
    Article Google Scholar
  30. Zilles, K. & Rehkämper, G. in Orang-utan Biology (ed. Schwartz, J. H.) 157–176 (Oxford Univ. Press, New York, 1988).
    Google Scholar

Download references

Acknowledgements

We thank J. M. Allman and M. J. Berry for discussions, R. Kasthuri for research assistance, and T. A. Barney for secretarial assistance. D.A.C. is in the Princeton University Program in Biophysics. S.S.-H.W. is supported by the Alfred P. Sloan Foundation.

Author information

Authors and Affiliations

  1. Department of Molecular Biology, Princeton University, Princeton, 08544, New Jersey, USA
    Damon A. Clark & Samuel S.-H. Wang
  2. Department of Physics, Princeton University, Princeton, 08544, New Jersey, USA
    Damon A. Clark
  3. Bell Laboratories, Lucent Technologies, 600 Mountain Avenue, Murray Hill, 07974, New Jersey, USA
    Partha P. Mitra

Authors

  1. Damon A. Clark
  2. Partha P. Mitra
  3. Samuel S.-H. Wang

Corresponding author

Correspondence toSamuel S.-H. Wang.

Supplementary information

Figure a (GIF 10.6 KB)

Figure b (GIF 7.85 KB)

Figure c (GIF 8.35 KB)

Primate key

Clark_data (TXT 22.4 KB)

What's what in 'Clark_data.txt': The file is tab-delimited. Raw volume data from Stephan et al. (1981). All volumes given are in mm^3 unless otherwise noted.

Clark_tables (XLS 25.0 KB)

Clark_data (PDF 551 kb)

Rights and permissions

About this article

Cite this article

Clark, D., Mitra, P. & Wang, SH. Scalable architecture in mammalian brains.Nature 411, 189–193 (2001). https://doi.org/10.1038/35075564

Download citation

This article is cited by

Associated content