α-CaMKII-dependent plasticity in the cortex is required for permanent memory (original) (raw)

References

  1. Squire, L. R. & Alvarez, P. Retrograde amnesia and memory consolidation: a neurobiological perspective. Curr. Opin. Neurobiol. 5, 169–177 (1995).
    Article CAS Google Scholar
  2. Graham, K. S., Patterson, K. & Hodges, J. R. Episodic memory: new insights from the study of semantic dementia. Curr. Opin. Neurobiol. 9, 245–250 (1999).
    Article CAS Google Scholar
  3. McClelland, J. L., McNaughton, B. L. & O'Reilly, R. C. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol. Rev. 102, 419–457 (1995).
    Article Google Scholar
  4. Dudai, Y. Consolidation: fragility on the road to the engram. Neuron 17, 367–370 (1996).
    Article CAS Google Scholar
  5. McGaugh, J. L. Memory—a century of consolidation. Science 287, 248–251 (2000).
    Article ADS CAS Google Scholar
  6. Silva, A. J., Paylor, R., Wehner, J. M. & Tonegawa, S. Impaired spatial learning in alpha-calcium-calmodulin kinase II mutant mice. Science 257, 206–211 (1992).
    Article ADS CAS Google Scholar
  7. Silva, A. J. et al. Impaired learning in mice with abnormal short-lived plasticity. Curr. Biol. 6, 1509–1518 (1996).
    Article CAS Google Scholar
  8. Glazewski, S., Chen, C. M., Silva, A. & Fox, K. Requirement for alpha-CaMKII in experience-dependent plasticity of the barrel cortex. Science 272, 421–423 (1996).
    Article ADS CAS Google Scholar
  9. Gordon, J. A., Cioffi, D., Silva, A. J. & Stryker, M. P. Deficient plasticity in the primary visual cortex of alpha-calcium/calmodulin-dependent protein kinase II mutant mice. Neuron 17, 491–496 (1996).
    Article CAS Google Scholar
  10. Kim, J. J. & Fanselow, M. S. Modality-specific retrograde amnesia of fear. Science 256, 675–677 (1992).
    Article ADS CAS Google Scholar
  11. Frankland, P. W., Cestari, V., Filipkowski, R. K., McDonald, R. J. & Silva, A. J. The dorsal hippocampus is essential for context discrimination but not for contextual conditioning. Behav. Neurosci. 112, 863–874 (1998).
    Article CAS Google Scholar
  12. Anagnostaras, S. G., Josselyn, S. A., Frankland, P. W. & Silva, A. J. Computer-assisted behavioral assessment of Pavlovian fear conditioning in mice. Learn. Mem. 7, 58–72 (2000).
    Article CAS Google Scholar
  13. Bourtchouladze, R. et al. Different training procedures recruit either one or two critical periods for contextual memory consolidation, each of which requires protein synthesis and PKA. Learn. Mem. 5, 365–374 (1998).
    CAS PubMed PubMed Central Google Scholar
  14. Bontempi, B., Laurent-Demir, C., Destrade, C. & Jaffard, R. Time-dependent reorganization of brain circuitry underlying long-term memory storage. Nature 400, 671–675 (1999).
    Article ADS CAS Google Scholar
  15. Shimizu, E., Tang, Y. P., Rampon, C. & Tsien, J. Z. NMDA receptor-dependent synaptic reinforcement as a crucial process for memory consolidation. Science 290, 1170–1174 (2000).
    Article ADS CAS Google Scholar
  16. Morris, R. G. M., Garrud, P., Rawlins, J. N. P. & O'Keefe, J. Place navigation impaired in rats with hippocampal lesions. Nature 297, 681–683 (1982).
    Article ADS CAS Google Scholar
  17. Mumby, D. G., Astur, R. S., Weisend, M. P. & Sutherland, R. J. Retrograde amnesia and selective damage to the hippocampal formation: memory for places and object discriminations. Behav. Brain Res. 106, 97–107 (1999).
    Article CAS Google Scholar
  18. Riedel, G. et al. Reversible neural inactivation reveals hippocampal participation in several memory processes. Nature Neurosci. 2, 898–905 (1998).
    Article Google Scholar
  19. Knowlton, B. J. & Fanselow, M. S. The hippocampus, consolidation and on-line memory. Curr. Opin. Neurobiol. 8, 293–296 (1998).
    Article CAS Google Scholar
  20. Whishaw, I. Q., McKenna, J. E. & Maaswinkel, H. Hippocampal lesions and path integration. Curr. Opin. Neurobiol. 7, 228–234 (1997).
    Article CAS Google Scholar
  21. Kirkwood, A., Silva, A. & Bear, M. F. Age-dependent decrease of synaptic plasticity in the neocortex of alphaCaMKII mutant mice. Proc. Natl Acad. Sci. USA 94, 3380–3383 (1997).
    Article ADS CAS Google Scholar
  22. Scoville, W. B. & Milner, B. Loss of recent memory after hippocampal bilateral lesions. J. Neurol. Neurosurg. Psychiatry 20, 11–12 (1957).
    Article CAS Google Scholar
  23. Rempel-Clower, N. L., Zola, S. M., Squire, L. R. & Amaral, D. G. Three cases of enduring memory impairment after bilateral damage limited to the hippocampal formation. J. Neurosci. 16, 5233–5255 (1996).
    Article CAS Google Scholar
  24. Zola-Morgan, S. M. & Squire, L. R. The primate hippocampal formation: evidence for a time-limited role in memory storage. Science 250, 288–290 (1990).
    Article ADS CAS Google Scholar
  25. Nadel, L. & Moscovitch, M. Memory consolidation, retrograde amnesia and the hippocampal complex. Curr. Opin. Neurobiol. 7, 217–227 (1997).
    Article CAS Google Scholar
  26. Cho, Y. H., Beracochea, D. & Jaffard, R. Extended temporal gradient for the retrograde and anterograde amnesia produced by ibotenate entorhinal cortex lesions in mice. J. Neurosci. 13, 1759–1766 (1993).
    Article CAS Google Scholar
  27. Giese, K. P., Fedorov, N. B., Filipkowski, R. K. & Silva, A. J. Autophosphorylation at Thr286 of the α-calcium-calmodulin kinase II in LTP and learning. Science 279, 870–873 (1998).
    Article ADS CAS Google Scholar
  28. Glazewski, S., Giese, K., Silva, A. & Fox, K. The role of alpha-CaMKII autophosphorylation in neocortical experience-dependent plasticity. Nature Neurosci. 3, 911–918 (2000).
    Article CAS Google Scholar
  29. Bourtchuladze, R. et al. Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79, 59–68 (1994).
    Article CAS Google Scholar
  30. Kirkwood, A. & Bear, M. F. Hebbian synapses in visual cortex. J. Neurosci. 14, 1634–1645 (1994).
    Article CAS Google Scholar

Download references