Translational control by CPEB: a means to the end (original) (raw)
References
Muckenthaler, M., Gray, N. K. & Hentze, M. W. IRP-1 binding to ferritin mRNA prevents the recruitment of the small ribosomal subunit by the cap-binding complex eIF4F. Mol. Cell2 383–388 (1998). ArticleCASPubMed Google Scholar
Ostareck, D. H., Ostareck-Lederer, A., Shatsky, I. N. & Hentze, M. W. Lipoxygenase mRNA silencing in erythroid differentiation: the 3′UTR regulatory complex controls 60S ribosomal subunit joining. Cell104, 281–290 (2001).Shows thatLOXmRNA translation is controlled by a specific mRNA–protein complex formed between the differentiation control element (DICE) in the 3′ untranslated region (UTR). hnRNPs K and E1 bind to the DICE and impair the joining of the 60S ribosomal subunit to form a translation competent 80S ribosome. ArticleCASPubMed Google Scholar
Hershey, J. W. B. & Merrick, W. C. in Pathway and Mechanism of Initiation of Protein Synthesis 33–88 (Cold Spring Harbor Laboratory Press, New York, 2000). Google Scholar
Lamphear, B. J., Kirchweger, R., Skern, T. & Rhoads, R. E. Mapping of functional domains in eukaryotic protein synthesis initiation factor 4G (eIF4G) with picornaviral proteases. Implications for cap-dependent and cap-independent translational initiation. J. Biol. Chem.270, 21975–21983 (1995). ArticleCASPubMed Google Scholar
Mader, S., Lee, H., Pause, A. & Sonenberg, N. The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4γ and the translational repressors 4E-binding proteins. Mol. Cell. Biol.15, 4990–4997 (1995). ArticleCASPubMedPubMed Central Google Scholar
Korneeva, N. L., Lamphear, B. J., Hennigan, F. L., Merrick, W. C. & Rhoads, R. E. Characterization of the two eIF4A-binding sites on human eIF4G-1. J. Biol. Chem.276, 2872–2879 (2001). ArticleCASPubMed Google Scholar
Tarun, S. Z. & Sachs, A. B. Association of the yeast poly(A) tail binding protein with translation initiation factor eIF-4G. EMBO J.15, 7168–7177 (1996).Shows that the proteins bound to the mRNA cap (eIF4G) and poly(A) tail (PABP) are physically associated. These data support the model that the Pabl–poly(A) tail complex on mRNA can interact with the cap structure through eIF4G. ArticleCASPubMedPubMed Central Google Scholar
Le, H. et al. Translation initiation factors eIF-iso4G and eIF-4B interact with the poly(A)-binding protein and increase its RNA binding activity. J. Biol. Chem.272, 16247–16255 (1997). ArticleCASPubMed Google Scholar
Imataka, H., Gradi, A. & Sonenberg, N. A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. EMBO J.17, 7480–7489 (1998). ArticleCASPubMedPubMed Central Google Scholar
Pestova, T. V. et al. The joining of ribosomal subunits in eukaryotes requires eIF5B. Nature403, 332–335 (2000). ArticleCASPubMed Google Scholar
Gingras, A. C., Raught, B. & Sonenberg, N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu. Rev. Biochem.68, 13–63 (1999). Article Google Scholar
Gray, N. K. & Hentze, M. W. Iron regulatory protein prevents binding of the 43S translation pre-initiation complex to ferritin and eALAS mRNAs. EMBO J.13, 3882–3891 (1994). ArticleCASPubMedPubMed Central Google Scholar
Stebbins-Boaz, B., Cao, Q., de Moor, C. H., Mendez, R. & Richter, J. D. Maskin is a CPEB-associated factor that transiently interacts with eIF-4E. Mol. Cell4, 1017–1027 (1999).Describes a new CPEB-associated protein termed maskin. Maskin binds directly to eIF4E through a peptide sequence that is conserved among elF4E-binding proteins. The maskin–elF4E interaction is substantially reduced during oocyte maturation. ArticleCASPubMed Google Scholar
Tarun, S. Z., Wells, S. E., Deardorff, J. A. & Sachs, A. B. Translation initiation factor eIF4G mediates in vitro poly(A) tail-dependent translation. Proc. Natl Acad. Sci. USA94, 9046–9051 (1997). ArticleCASPubMedPubMed Central Google Scholar
Tian, J., Kim, S., Heilig, E. & Ruderman, J. V. Identification of XPR-1, a progesterone receptor required for Xenopus oocyte activation. Proc. Natl Acad. Sci. USA97 14358–14363 (2000). ArticleCASPubMedPubMed Central Google Scholar
Bayaa, M., Booth, R. A., Sheng, Y. & Liu, X. J. The classical progesterone receptor mediates Xenopus oocyte maturation through a nongenomic mechanism. Proc. Natl Acad. Sci. USA97, 12607–12612 (2000). ArticleCASPubMedPubMed Central Google Scholar
Sagata, N. Meiotic maturation and arrest in animal oocytes. Semin. Cell Dev. Biol.9, 535–537 (1998). ArticleCASPubMed Google Scholar
Yamashita, M. Molecular mechanisms of meiotic maturation and arrest in fish and amphibian oocytes. Semin. Cell Dev. Biol.9, 569–579 (1998). ArticleCASPubMed Google Scholar
Nebreda, A. R. & Ferby, I. Regulation of the meiotic cell cycle in oocytes. Curr. Opin. Cell Biol.12, 666–675 (2000). ArticleCASPubMed Google Scholar
Roy, L. M. et al. The cyclin B2 component of MPF is a substrate for the c-mos(xe) proto-oncogene product. Cell61, 825–831 (1990). ArticleCASPubMed Google Scholar
De Moor, C. H. & Richter, J. D. The mos pathway regulates cytoplasmic polyadenylation in Xenopus oocytes. Mol. Cell. Biol.17, 6419–6426 (1997). ArticleCASPubMedPubMed Central Google Scholar
Ballantyne, S., Daniel, D. L. Jr & Wickens, M. A dependent pathway of cytoplasmic polyadenylation reactions linked to cell cycle control by c-mos and CDK1 activation. Mol. Biol. Cell8, 1633–1648 (1997). ArticleCASPubMedPubMed Central Google Scholar
Frank-Vaillant, M., Jessus, C., Ozon, R., Maller, J. L. & Haccard, O. Two distinct mechanisms control the accumulation of cyclin B1 and Mos in Xenopus oocytes in response to progesterone. Mol. Biol. Cell10, 3279–3288 (1999). ArticleCASPubMedPubMed Central Google Scholar
Sagata, N., Watanabe, N., Vande Woude, G. F. & Ikawa, Y. The c-mos proto-oncogene product is a cytostatic factor responsible for meiotic arrest in vertebrate eggs. Nature342, 51251–51258 (1989). Article Google Scholar
Hashimoto, N. et al. Parthenogenetic activation of oocytes in c-_mos_-deficient mice. Nature370, 68–71 (1994). ArticleCASPubMed Google Scholar
Bhatt, R. R. & Ferrell, J. E. Jr The protein kinase p90rsk as an essential mediator of cytostatic factor activity. Science286, 1362–1365 (1999). ArticleCASPubMed Google Scholar
Gross, S. D., Schwab, M. S., Lewellyn, A. L. & Maller, J. L. Induction of metaphase arrest in cleaving Xenopus embryos by the protein kinase p90Rsk. Science286, 1365–1367 (1999). ArticleCASPubMed Google Scholar
Fox, C. A., Sheets, M. D. & Wickens, M. P. Poly(A) addition during maturation of frog oocytes: distinct nuclear and cytoplasmic activities and regulation by the sequence UUUUUAU. Genes Dev.3, 2151–2162 (1989). ArticleCASPubMed Google Scholar
McGrew, L. L., Dworkin-Rastl, E., Dworkin, M. B. & Richter, J. D. Poly(A) elongation during Xenopus oocyte maturation is required for translational recruitment and is mediated by a short sequence element. Genes Dev.3, 803–815 (1989). ArticleCASPubMed Google Scholar
McGrew, L. L. & Richter, J. D. Translational control by cytoplasmic polyadenylation during Xenopus oocyte maturation: characterization of cis and trans elements and regulation by cyclin/MPF. EMBO J.9, 3743–3751 (1990). ArticleCASPubMedPubMed Central Google Scholar
Barkoff, A. F., Dickson, K. S., Gray, N. K. & Wickens, M. Translational control of cyclin B1 mRNA during meiotic maturation: coordinated repression and cytoplasmic polyadenylation. Dev. Biol.220, 97–109 (2000). ArticleCASPubMed Google Scholar
Ballantyne, S., Daniel, D. L. Jr & Wickens, M. A dependent pathway of cytoplasmic polyadenylation reactions linked to cell cycle control by c-mos and CDK1 activation. Mol. Biol. Cell8, 1633–1648 (1997). ArticleCASPubMedPubMed Central Google Scholar
Nakahata, S. et al. Biochemical identification of Xenopus Pumilio as a sequence-specific Cyclin B1 mRNA-binding protein that physically interacts with a Nanos homolog (Xcat-2) and a cytoplasmic polyadenylation element–binding protein (CPEB). J. Biol. Chem. (in the press).
Hake, L. E. & Richter, J. D. CPEB is a specificity factor that mediates cytoplasmic polyadenylation during Xenopus oocyte maturation. Cell79, 617–627 (1994). ArticleCASPubMed Google Scholar
Stebbins-Boaz, B., Hake, L. E. & Richter, J. D. CPEB controls the cytoplasmic polyadenylation of cyclin, Cdk2 and c-mos mRNAs and is necessary for oocyte maturation in Xenopus. EMBO J.15, 2582–2592 (1996). ArticleCASPubMedPubMed Central Google Scholar
Andresson, T. & Ruderman, J. V. The kinase Eg2 is a component of the Xenopus oocyte progesterone-activated signaling pathway. EMBO J.17, 5627–5637 (1998). ArticleCASPubMedPubMed Central Google Scholar
Frank-Vaillant, M. et al. Progesterone regulates the accumulation and the activation of Eg2 kinase in Xenopus oocytes. J. Cell Sci.113, 1127–1138 (2000). CASPubMed Google Scholar
Mendez, R. et al. Phosphorylation of CPE binding factor by Eg2 regulates translation of c-mos mRNA. Nature404, 302–307 (2000).Shows that an early site-specific phosphorylation of CPEB is necessary and sufficient for the activation ofc-mosmRNA polyadenylation and its subsequent translation, as well as for oocyte maturation. This regulatory phosphorylation event is catalysed by Eg2, a member of the Aurora family of serine/threonine protein kinases. ArticleCASPubMed Google Scholar
Mendez, R., Murthy, K. G., Ryan, K., Manley, J. L. & Richter, J. D. Phosphorylation of CPEB by Eg2 mediates the recruitment of CPSF into an active cytoplasmic polyadenylation complex. Mol. Cell6, 1253–1259 (2000).The authors show that the phosphorylation event described in reference 24 stimulates the direct interaction between CPEB and CPSF. The Eg2-stimulated and CPE-dependent polyadenylation is reconstitutedin vitrousing purified components. ArticleCASPubMed Google Scholar
Katsu, Y., Minshall, N., Nagahama, Y. & Standart, N. Ca2+ is required for phosphorylation of clam p82/CPEB in vitro: implications for dual and independent roles of MAP and Cdc2 kinases. Dev. Biol.209, 186–199 (1999). ArticleCASPubMed Google Scholar
Fox, C. A., Sheets, M. D., Wahle, E. & Wickens, M. P. Polyadenylation of maternal mRNA during oocyte maturation: poly(A) addition in vitro requires a regulated RNA binding activity and a poly(A) polymerase. EMBO J.11, 5021–5032 (1992). ArticleCASPubMedPubMed Central Google Scholar
Bilger, A., Fox, C. A., Wahle, E. & Wickens, M. Nuclear polyadenylation factors recognize cytoplasmic polyadenylation elements. Genes Dev.8, 1106–1116 (1994). ArticleCASPubMed Google Scholar
Dickson, K. S., Bilger, A., Ballantyne, S. & Wickens, M. P. The cleavage and polyadenylation specificity factor in Xenopus laevis oocytes is a cytoplasmic factor involved in regulated polyadenylation. Mol. Cell. Biol.19, 5707–5717 (1999).The authors report the cloning of the 100-kDa subunit ofXenopusCPSF, which is predominantly localized to the cytoplasm. This cytoplasmic CPSF forms a specific complex with RNAs that contain both the cytoplasmic polyadenylation element (CPE) and the polyadenylation element AAUAAA. When the 100-kDa subunit is immunodepleted, there is a reduction of cytoplasmic polyadenylation. ArticleCASPubMedPubMed Central Google Scholar
Ballantyne, S., Bilger, A., Astrom, J., Virtanen, A. & Wickens, M. Poly(A) polymerases in the nucleus and cytoplasm of frog oocytes: dynamic changes during oocyte maturation and early development. RNA1, 64–78 (1995). CASPubMedPubMed Central Google Scholar
Zhao, J., Hyman, L. & Moore, C. Formation of mRNA 3′ ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol. Mol. Biol. Rev.63, 405–445 (1999). CASPubMedPubMed Central Google Scholar
Colgan, D. F., Murthy, K. G., Prives, C. & Manley, J. L. Cell-cycle related regulation of poly(A) polymerase by phosphorylation. Nature384, 282–285 (1996). ArticleCASPubMed Google Scholar
Colgan, D. F., Murthy, K. G., Zhao, W., Prives, C. & Manley, J. L. Inhibition of poly(A) polymerase requires p34cdc2/cyclin B phosphorylation of multiple consensus and non-consensus sites. EMBO J.17, 1053–1062 (1998). ArticleCASPubMedPubMed Central Google Scholar
De Moor, C. H. & Richter, J. D. Cytoplasmic polyadenylation elements mediate masking and unmasking of cyclin B1 mRNA. EMBO J.18, 2294–2303 (1999). ArticleCASPubMedPubMed Central Google Scholar
Stutz, A. et al.. Masking, unmasking, and regulated polyadenylation cooperate in the translational control of a dormant mRNA in mouse oocytes. Genes Dev.12, 2535–2548 (1998). ArticleCASPubMedPubMed Central Google Scholar
Tay, J., Hodgman, R. & Richter, J. D. The control of cyclin B1 mRNA translation during mouse oocyte maturation. Dev. Biol.221, 1–9 (2000). ArticleCASPubMed Google Scholar
Minshall, N., Walker, J., Dale, M. & Standart, N. Dual roles of p82, the clam CPEB homolog, in cytoplasmic polyadenylation and translational masking. RNA5, 27–38 (1999). ArticleCASPubMedPubMed Central Google Scholar
Tarun, S. Z. & Sachs, A. B. A common function for mRNA 5′ and 3′ ends in translation initiation in yeast. Genes Dev.9, 2997–3007 (1995). ArticleCASPubMed Google Scholar
Preiss, T. & Hentze, M. W. Dual function of the messenger RNA cap structure in poly(A)-tail-promoted translation in yeast. Nature392, 516–520 (1998). ArticleCASPubMed Google Scholar
Kessler, S. H. & Sachs, A. B. RNA recognition motif 2 of yeast Pab1p is required for its functional interaction with eukaryotic translation initiation factor 4G. Mol. Cell. Biol.18, 51–57 (1998). ArticleCASPubMedPubMed Central Google Scholar
Wakiyama, M., Imataka, H. & Sonenberg, N. Interaction of eIF4G with poly(A)-binding protein stimulates translation and is critical for Xenopus oocyte maturation. Curr. Biol.10, 1147–1150 (2000). ArticleCASPubMed Google Scholar
Zelus, B. D., Giebelhaus, D. H., Eib, D. W., Kenner, K. A. & Moon, R. T. Expression of the poly(A)-binding protein during development of Xenopus laevis. Mol. Cell. Biol.9, 2756–2760 (1989). ArticleCASPubMedPubMed Central Google Scholar
Voeltz, G. K., Ongkasuwan, J., Standart, N. & Steitz, J. A. A novel embryonic poly(A) binding protein, ePAB, regulates mRNA deadenylation in Xenopus egg extracts. Genes Dev.15, 774–788 (2001). ArticleCASPubMedPubMed Central Google Scholar
Paris, J., Swenson, K., Piwnica-Worms, H. & Richter, J. D. Maturation-specific polyadenylation: in vitro activation by p34_cdc2_ and phosphorylation of a 58-kD CPE-binding protein. Genes Dev.5, 1697–1708 (1991). ArticleCASPubMed Google Scholar
Reverte, C. G., Ahearn, M. D. & Hake, L. E. CPEB degradation during Xenopus oocyte maturation requires a pest domain and the 26S proteasome. Dev. Biol.231, 447–458 (2001). ArticleCASPubMed Google Scholar
Morley, S. J. & Pain, V. M. Hormone-induced meiotic maturation in Xenopus oocytes occurs independently of p70s6k activation and is associated with enhanced initiation factor (eIF)-4F phosphorylation and complex formation. J. Cell. Sci.108, 1751–1760 (1995). CASPubMed Google Scholar
Kuge, H. & Richter, J. D. Cytoplasmic 3′ poly(A) addition induces 5′ cap ribose methylation: implications for translational control of maternal mRNA. EMBO J.14, 6301–6310 (1995). ArticleCASPubMedPubMed Central Google Scholar
Kuge, H., Brownlee, G. G., Gershon, P. D. & Richter, J. D. Cap ribose methylation of c-mos mRNA stimulates translation and oocyte maturation in Xenopus laevis. Nucleic Acids Res.26, 3208–3214 (1998). ArticleCASPubMedPubMed Central Google Scholar
Gillian-Daniel, D. L., Gray, N. K., Astrom, J., Barkoff, A. & Wickens, M. Modifications of the 5′ cap of mRNAs during Xenopus oocyte maturation: independence from changes in poly(A) length and impact on translation. Mol. Cell. Biol.18, 6152–6163 (1998). ArticleCASPubMedPubMed Central Google Scholar
Schnierie, B. S., Gershon, P. D. & Moss, B. Cap-specific mRNA (nucleoside-O2′-)-methyltransferase and poly(A) polymerase stimulatory activities of Vaccinia virus are mediated by a single protein. Proc. Natl Acad. Sci. USA89, 2897–2901 (1992). Article Google Scholar
Groisman, I. et al. CPEB, maskin, and cyclin B1 mRNA at the mitotic apparatus: implications for local translational control of cell division. Cell103, 435–447 (2000).The authors show that CPEB interacts with microtubules and is involved in the localization of cyclin B1 mRNA to the mitotic apparatus. Disruption of polyadenylation-induced translation inhibits cell division and promote spindle and centrosome defects. ArticleCASPubMed Google Scholar
Minshull, J., Blow, J. J. & Hunt, T. Translation of cyclin mRNA is necessary for extracts of activated Xenopus eggs to enter mitosis. Cell56, 947–956 (1989). ArticleCASPubMed Google Scholar
Murray, A. W. & Kirschner, M. W. Cyclin synthesis drives the early embryonic cell cycle. Nature339, 275–280 (1989). ArticleCASPubMed Google Scholar
Huang, J. & Raff, J. W. The disappearance of cyclin B at the end of mitosis is regulated spatially in Drosophila cells. EMBO J.18, 2184–2195 (1999). ArticleCASPubMedPubMed Central Google Scholar
Hagting, A., Karlsson, C., Clute, P., Jackman, M. & Pines, J. MPF localization is controlled by nuclear export. EMBO J.17, 4127–4138 (1998). ArticleCASPubMedPubMed Central Google Scholar
Christerson, L. B. & McKearin, D. M. orb is required for anteroposterior and dorsoventral patterning during Drosophila oogenesis. Genes Dev.8, 614–628 (1994). ArticleCASPubMed Google Scholar
Chang, J. S., Tan, L. & Schedl, P. The Drosophila CPEB homolog, orb, is required for oskar protein expression in oocytes. Dev. Biol.215, 91–106 (1999). ArticleCASPubMed Google Scholar
Tan, L., Chang, J. S., Costa, A. & Schedl, P. An autoregulatory feedback loop directs the localized expression of the Drosophila CPEB protein Orb in the developing oocyte. Development128, 1159–1169 (2001). CASPubMed Google Scholar
Lantz, V., Chang, J. S., Horabin, J. I., Bopp, D. & Schedl, P. The Drosophila orb RNA-binding protein is required for the formation of the egg chamber and establishment of polarity. Genes Dev.8, 598–613 (1994). ArticleCASPubMed Google Scholar
Huynh, J. & St Johnston, D. The role of BicD, egl, orb and the microtubules in the restriction of meiosis to the Drosophila oocyte. Development127, 2785–2794 (2000). CASPubMed Google Scholar
Bally-Cuif, L., Schatz, W. J. & Ho, R. K. Characterization of the zebrafish Orb/CPEB-related RNA binding protein and localization of maternal components in the zebrafish oocyte. Mech. Dev.77, 31–47 (1998). ArticleCASPubMed Google Scholar
Schroeder, K. E., Condic, M. L., Eisenberg, L. M. & Yost, H. J. Spatially regulated translation in embryos: asymmetric expression of maternal Wnt-11 along the dorsal-ventral axis in Xenopus. Dev. Biol.214, 288–297 (1999). ArticleCASPubMed Google Scholar
Gebauer, F., Xu, W., Cooper, G. M. & Richter, J. D. Translational control by cytoplasmic polyadenylation of c-mos mRNA is necessary for oocyte maturation in the mouse. EMBO J.13, 5712–5720 (1994). ArticleCASPubMedPubMed Central Google Scholar
Salles, F. J., Lieberfarb, M. E., Wreden, C., Gergen, J. P. & Strickland, S. Coordinate initiation of Drosophila development by regulated polyadenylation of maternal messenger RNAs. Science266, 1996–1999 (1994). ArticleCASPubMed Google Scholar
Gebauer, F. & Richter, J. D. Mouse cytoplasmic polyadenylation element binding protein: an evolutionarily conserved protein that interacts with the cytoplasmic polyadenylation elements of c-mos mRNA. Proc. Natl Acad. Sci. USA93, 14602–14607 (1996). ArticleCASPubMedPubMed Central Google Scholar
Wu, L. et al. CPEB-mediated cytoplasmic polyadenylation and the regulation of experience-dependent translation of α-CaMKII mRNA at synapses. Neuron21, 1129–1139 (1998). ArticleCASPubMed Google Scholar
Kang, H. & Schuman, E. M. A requirement for local protein synthesis in neurotrophin-induced hippocampal synaptic plasticity. Science273, 1402–1406 (1996). ArticleCASPubMed Google Scholar
Huber, K. M., Kayser, M. S. & Bear, M. F. Role for rapid dendritic protein synthesis in hippocampal mGluR-dependent long-term depression. Science288, 1254–1257 (2000). ArticleCASPubMed Google Scholar
Martin, K. C., Barad, M. & Kandel, E. R. Local protein synthesis and its role in synapse-specific plasticity. Curr. Opin. Neurobiol.10, 587–592 (2000). ArticleCASPubMed Google Scholar
Casadio, A. et al. A transient, neuron-wide form of CREB-mediated long-term facilitation can be stabilized at specific synapses by local protein synthesis. Cell99, 221–237 (1999). ArticleCASPubMed Google Scholar
Martin, K. C. et al. Synapse-specific, long-term facilitation of Aplysia sensory to motor synapses: a function for local protein synthesis in memory storage. Cell91, 927–938 (1997). ArticleCASPubMed Google Scholar
Luitjens, C., Gallegos, M., Kraemer, B., Kimble, J. & Wickens, M. CPEB proteins control two key steps in spermatogenesis in C. elegans. Genes Dev.14, 2596–2609 (2000).The authors describe four CPEB homologues inC. elegans: cpb-1, cpb-2, cpb-3andfog-1. RNA interference assays show that CPB-1 and FOG-1 have key functions in spermatogenesis whereas none seems to be required for oogenesis. ArticleCASPubMedPubMed Central Google Scholar
Hake, L. E., Mendez, R. & Richter, J. D. Specificity of RNA binding by CPEB: requirement for RNA recognition motifs and a novel zinc finger. Mol. Cell. Biol.18, 685–693 (1998). ArticleCASPubMedPubMed Central Google Scholar
Tay, J. & Richter, J. D. Germ cell differentiation and synaptonemal complex formation are disrupted in CPEB knockout mice. Dev. Cell (in the press).The authors show that inCpeb-knockout mice, germ cell development is arrested at the pachytene stage. This defect originates in a failure of two CPE-containing mRNAs that encode synaptonemal complex proteins to be translated.
Wells, S. E., Hillner, P. E., Vale, R. D. & Sachs, A. B. Circularization of mRNA by eukaryotic translation initiation factors. Mol. Cell2, 135–140 (1998).The authors reconstitute the eIF4E–eIF4G–PABP complex with recombinant proteins, and show by atomic force microscopy that the complex can circularize capped, polyadenylated RNA. ArticleCASPubMed Google Scholar
Gallie, D. R. The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev.5, 2108–2116 (1991). ArticleCASPubMed Google Scholar
Craig, A. W., Haghighat, A., Yu, A. T. & Sonenberg, N. Interaction of polyadenylate-binding protein with the eIF4G homologue PAIP enhances translation. Nature392, 520–523 (1998). ArticleCASPubMed Google Scholar
Ostareck, D. H. et al. mRNA silencing in erythroid differentiation: hnRNP K and hnRNP E1 regulate 15-lipoxygenase translation from the 3′ end. Cell89, 597–606 (1997). ArticleCASPubMed Google Scholar