Translational control by CPEB: a means to the end (original) (raw)

References

  1. Muckenthaler, M., Gray, N. K. & Hentze, M. W. IRP-1 binding to ferritin mRNA prevents the recruitment of the small ribosomal subunit by the cap-binding complex eIF4F. Mol. Cell 2 383–388 (1998).
    Article CAS PubMed Google Scholar
  2. Ostareck, D. H., Ostareck-Lederer, A., Shatsky, I. N. & Hentze, M. W. Lipoxygenase mRNA silencing in erythroid differentiation: the 3′UTR regulatory complex controls 60S ribosomal subunit joining. Cell 104, 281–290 (2001).Shows that LOX mRNA translation is controlled by a specific mRNA–protein complex formed between the differentiation control element (DICE) in the 3′ untranslated region (UTR). hnRNPs K and E1 bind to the DICE and impair the joining of the 60S ribosomal subunit to form a translation competent 80S ribosome.
    Article CAS PubMed Google Scholar
  3. Hershey, J. W. B. & Merrick, W. C. in Pathway and Mechanism of Initiation of Protein Synthesis 33–88 (Cold Spring Harbor Laboratory Press, New York, 2000).
    Google Scholar
  4. Lamphear, B. J., Kirchweger, R., Skern, T. & Rhoads, R. E. Mapping of functional domains in eukaryotic protein synthesis initiation factor 4G (eIF4G) with picornaviral proteases. Implications for cap-dependent and cap-independent translational initiation. J. Biol. Chem. 270, 21975–21983 (1995).
    Article CAS PubMed Google Scholar
  5. Mader, S., Lee, H., Pause, A. & Sonenberg, N. The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4γ and the translational repressors 4E-binding proteins. Mol. Cell. Biol. 15, 4990–4997 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  6. Korneeva, N. L., Lamphear, B. J., Hennigan, F. L., Merrick, W. C. & Rhoads, R. E. Characterization of the two eIF4A-binding sites on human eIF4G-1. J. Biol. Chem. 276, 2872–2879 (2001).
    Article CAS PubMed Google Scholar
  7. Tarun, S. Z. & Sachs, A. B. Association of the yeast poly(A) tail binding protein with translation initiation factor eIF-4G. EMBO J. 15, 7168–7177 (1996).Shows that the proteins bound to the mRNA cap (eIF4G) and poly(A) tail (PABP) are physically associated. These data support the model that the Pabl–poly(A) tail complex on mRNA can interact with the cap structure through eIF4G.
    Article CAS PubMed PubMed Central Google Scholar
  8. Le, H. et al. Translation initiation factors eIF-iso4G and eIF-4B interact with the poly(A)-binding protein and increase its RNA binding activity. J. Biol. Chem. 272, 16247–16255 (1997).
    Article CAS PubMed Google Scholar
  9. Imataka, H., Gradi, A. & Sonenberg, N. A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. EMBO J. 17, 7480–7489 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  10. Pestova, T. V. et al. The joining of ribosomal subunits in eukaryotes requires eIF5B. Nature 403, 332–335 (2000).
    Article CAS PubMed Google Scholar
  11. Gingras, A. C., Raught, B. & Sonenberg, N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu. Rev. Biochem. 68, 13–63 (1999).
    Article Google Scholar
  12. Gray, N. K. & Hentze, M. W. Iron regulatory protein prevents binding of the 43S translation pre-initiation complex to ferritin and eALAS mRNAs. EMBO J. 13, 3882–3891 (1994).
    Article CAS PubMed PubMed Central Google Scholar
  13. Stebbins-Boaz, B., Cao, Q., de Moor, C. H., Mendez, R. & Richter, J. D. Maskin is a CPEB-associated factor that transiently interacts with eIF-4E. Mol. Cell 4, 1017–1027 (1999).Describes a new CPEB-associated protein termed maskin. Maskin binds directly to eIF4E through a peptide sequence that is conserved among elF4E-binding proteins. The maskin–elF4E interaction is substantially reduced during oocyte maturation.
    Article CAS PubMed Google Scholar
  14. Tarun, S. Z., Wells, S. E., Deardorff, J. A. & Sachs, A. B. Translation initiation factor eIF4G mediates in vitro poly(A) tail-dependent translation. Proc. Natl Acad. Sci. USA 94, 9046–9051 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  15. Tian, J., Kim, S., Heilig, E. & Ruderman, J. V. Identification of XPR-1, a progesterone receptor required for Xenopus oocyte activation. Proc. Natl Acad. Sci. USA 97 14358–14363 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  16. Bayaa, M., Booth, R. A., Sheng, Y. & Liu, X. J. The classical progesterone receptor mediates Xenopus oocyte maturation through a nongenomic mechanism. Proc. Natl Acad. Sci. USA 97, 12607–12612 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  17. Sagata, N. Meiotic maturation and arrest in animal oocytes. Semin. Cell Dev. Biol. 9, 535–537 (1998).
    Article CAS PubMed Google Scholar
  18. Yamashita, M. Molecular mechanisms of meiotic maturation and arrest in fish and amphibian oocytes. Semin. Cell Dev. Biol. 9, 569–579 (1998).
    Article CAS PubMed Google Scholar
  19. Nebreda, A. R. & Ferby, I. Regulation of the meiotic cell cycle in oocytes. Curr. Opin. Cell Biol. 12, 666–675 (2000).
    Article CAS PubMed Google Scholar
  20. Roy, L. M. et al. The cyclin B2 component of MPF is a substrate for the c-mos(xe) proto-oncogene product. Cell 61, 825–831 (1990).
    Article CAS PubMed Google Scholar
  21. De Moor, C. H. & Richter, J. D. The mos pathway regulates cytoplasmic polyadenylation in Xenopus oocytes. Mol. Cell. Biol. 17, 6419–6426 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  22. Ballantyne, S., Daniel, D. L. Jr & Wickens, M. A dependent pathway of cytoplasmic polyadenylation reactions linked to cell cycle control by c-mos and CDK1 activation. Mol. Biol. Cell 8, 1633–1648 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  23. Frank-Vaillant, M., Jessus, C., Ozon, R., Maller, J. L. & Haccard, O. Two distinct mechanisms control the accumulation of cyclin B1 and Mos in Xenopus oocytes in response to progesterone. Mol. Biol. Cell 10, 3279–3288 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  24. Sagata, N., Watanabe, N., Vande Woude, G. F. & Ikawa, Y. The c-mos proto-oncogene product is a cytostatic factor responsible for meiotic arrest in vertebrate eggs. Nature 342, 51251–51258 (1989).
    Article Google Scholar
  25. Hashimoto, N. et al. Parthenogenetic activation of oocytes in c-_mos_-deficient mice. Nature 370, 68–71 (1994).
    Article CAS PubMed Google Scholar
  26. Bhatt, R. R. & Ferrell, J. E. Jr The protein kinase p90rsk as an essential mediator of cytostatic factor activity. Science 286, 1362–1365 (1999).
    Article CAS PubMed Google Scholar
  27. Gross, S. D., Schwab, M. S., Lewellyn, A. L. & Maller, J. L. Induction of metaphase arrest in cleaving Xenopus embryos by the protein kinase p90Rsk. Science 286, 1365–1367 (1999).
    Article CAS PubMed Google Scholar
  28. Fox, C. A., Sheets, M. D. & Wickens, M. P. Poly(A) addition during maturation of frog oocytes: distinct nuclear and cytoplasmic activities and regulation by the sequence UUUUUAU. Genes Dev. 3, 2151–2162 (1989).
    Article CAS PubMed Google Scholar
  29. McGrew, L. L., Dworkin-Rastl, E., Dworkin, M. B. & Richter, J. D. Poly(A) elongation during Xenopus oocyte maturation is required for translational recruitment and is mediated by a short sequence element. Genes Dev. 3, 803–815 (1989).
    Article CAS PubMed Google Scholar
  30. McGrew, L. L. & Richter, J. D. Translational control by cytoplasmic polyadenylation during Xenopus oocyte maturation: characterization of cis and trans elements and regulation by cyclin/MPF. EMBO J. 9, 3743–3751 (1990).
    Article CAS PubMed PubMed Central Google Scholar
  31. Barkoff, A. F., Dickson, K. S., Gray, N. K. & Wickens, M. Translational control of cyclin B1 mRNA during meiotic maturation: coordinated repression and cytoplasmic polyadenylation. Dev. Biol. 220, 97–109 (2000).
    Article CAS PubMed Google Scholar
  32. Ballantyne, S., Daniel, D. L. Jr & Wickens, M. A dependent pathway of cytoplasmic polyadenylation reactions linked to cell cycle control by c-mos and CDK1 activation. Mol. Biol. Cell 8, 1633–1648 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  33. Nakahata, S. et al. Biochemical identification of Xenopus Pumilio as a sequence-specific Cyclin B1 mRNA-binding protein that physically interacts with a Nanos homolog (Xcat-2) and a cytoplasmic polyadenylation element–binding protein (CPEB). J. Biol. Chem. (in the press).
  34. Hake, L. E. & Richter, J. D. CPEB is a specificity factor that mediates cytoplasmic polyadenylation during Xenopus oocyte maturation. Cell 79, 617–627 (1994).
    Article CAS PubMed Google Scholar
  35. Stebbins-Boaz, B., Hake, L. E. & Richter, J. D. CPEB controls the cytoplasmic polyadenylation of cyclin, Cdk2 and c-mos mRNAs and is necessary for oocyte maturation in Xenopus. EMBO J. 15, 2582–2592 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  36. Andresson, T. & Ruderman, J. V. The kinase Eg2 is a component of the Xenopus oocyte progesterone-activated signaling pathway. EMBO J. 17, 5627–5637 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  37. Frank-Vaillant, M. et al. Progesterone regulates the accumulation and the activation of Eg2 kinase in Xenopus oocytes. J. Cell Sci. 113, 1127–1138 (2000).
    CAS PubMed Google Scholar
  38. Mendez, R. et al. Phosphorylation of CPE binding factor by Eg2 regulates translation of c-mos mRNA. Nature 404, 302–307 (2000).Shows that an early site-specific phosphorylation of CPEB is necessary and sufficient for the activation of c-mos mRNA polyadenylation and its subsequent translation, as well as for oocyte maturation. This regulatory phosphorylation event is catalysed by Eg2, a member of the Aurora family of serine/threonine protein kinases.
    Article CAS PubMed Google Scholar
  39. Mendez, R., Murthy, K. G., Ryan, K., Manley, J. L. & Richter, J. D. Phosphorylation of CPEB by Eg2 mediates the recruitment of CPSF into an active cytoplasmic polyadenylation complex. Mol. Cell 6, 1253–1259 (2000).The authors show that the phosphorylation event described in reference 24 stimulates the direct interaction between CPEB and CPSF. The Eg2-stimulated and CPE-dependent polyadenylation is reconstituted in vitro using purified components.
    Article CAS PubMed Google Scholar
  40. Katsu, Y., Minshall, N., Nagahama, Y. & Standart, N. Ca2+ is required for phosphorylation of clam p82/CPEB in vitro: implications for dual and independent roles of MAP and Cdc2 kinases. Dev. Biol. 209, 186–199 (1999).
    Article CAS PubMed Google Scholar
  41. Fox, C. A., Sheets, M. D., Wahle, E. & Wickens, M. P. Polyadenylation of maternal mRNA during oocyte maturation: poly(A) addition in vitro requires a regulated RNA binding activity and a poly(A) polymerase. EMBO J. 11, 5021–5032 (1992).
    Article CAS PubMed PubMed Central Google Scholar
  42. Bilger, A., Fox, C. A., Wahle, E. & Wickens, M. Nuclear polyadenylation factors recognize cytoplasmic polyadenylation elements. Genes Dev. 8, 1106–1116 (1994).
    Article CAS PubMed Google Scholar
  43. Dickson, K. S., Bilger, A., Ballantyne, S. & Wickens, M. P. The cleavage and polyadenylation specificity factor in Xenopus laevis oocytes is a cytoplasmic factor involved in regulated polyadenylation. Mol. Cell. Biol. 19, 5707–5717 (1999).The authors report the cloning of the 100-kDa subunit of Xenopus CPSF, which is predominantly localized to the cytoplasm. This cytoplasmic CPSF forms a specific complex with RNAs that contain both the cytoplasmic polyadenylation element (CPE) and the polyadenylation element AAUAAA. When the 100-kDa subunit is immunodepleted, there is a reduction of cytoplasmic polyadenylation.
    Article CAS PubMed PubMed Central Google Scholar
  44. Ballantyne, S., Bilger, A., Astrom, J., Virtanen, A. & Wickens, M. Poly(A) polymerases in the nucleus and cytoplasm of frog oocytes: dynamic changes during oocyte maturation and early development. RNA 1, 64–78 (1995).
    CAS PubMed PubMed Central Google Scholar
  45. Gebauer, F. & Richter, J. D. Cloning and characterization of a Xenopus poly(A) polymerase. Mol. Cell. Biol. 15, 1422–1430 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  46. Zhao, J., Hyman, L. & Moore, C. Formation of mRNA 3′ ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol. Mol. Biol. Rev. 63, 405–445 (1999).
    CAS PubMed PubMed Central Google Scholar
  47. Colgan, D. F., Murthy, K. G., Prives, C. & Manley, J. L. Cell-cycle related regulation of poly(A) polymerase by phosphorylation. Nature 384, 282–285 (1996).
    Article CAS PubMed Google Scholar
  48. Colgan, D. F., Murthy, K. G., Zhao, W., Prives, C. & Manley, J. L. Inhibition of poly(A) polymerase requires p34cdc2/cyclin B phosphorylation of multiple consensus and non-consensus sites. EMBO J. 17, 1053–1062 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  49. De Moor, C. H. & Richter, J. D. Cytoplasmic polyadenylation elements mediate masking and unmasking of cyclin B1 mRNA. EMBO J. 18, 2294–2303 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  50. Stutz, A. et al.. Masking, unmasking, and regulated polyadenylation cooperate in the translational control of a dormant mRNA in mouse oocytes. Genes Dev. 12, 2535–2548 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  51. Tay, J., Hodgman, R. & Richter, J. D. The control of cyclin B1 mRNA translation during mouse oocyte maturation. Dev. Biol. 221, 1–9 (2000).
    Article CAS PubMed Google Scholar
  52. Minshall, N., Walker, J., Dale, M. & Standart, N. Dual roles of p82, the clam CPEB homolog, in cytoplasmic polyadenylation and translational masking. RNA 5, 27–38 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  53. Tarun, S. Z. & Sachs, A. B. A common function for mRNA 5′ and 3′ ends in translation initiation in yeast. Genes Dev. 9, 2997–3007 (1995).
    Article CAS PubMed Google Scholar
  54. Preiss, T. & Hentze, M. W. Dual function of the messenger RNA cap structure in poly(A)-tail-promoted translation in yeast. Nature 392, 516–520 (1998).
    Article CAS PubMed Google Scholar
  55. Kessler, S. H. & Sachs, A. B. RNA recognition motif 2 of yeast Pab1p is required for its functional interaction with eukaryotic translation initiation factor 4G. Mol. Cell. Biol. 18, 51–57 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  56. Wakiyama, M., Imataka, H. & Sonenberg, N. Interaction of eIF4G with poly(A)-binding protein stimulates translation and is critical for Xenopus oocyte maturation. Curr. Biol. 10, 1147–1150 (2000).
    Article CAS PubMed Google Scholar
  57. Zelus, B. D., Giebelhaus, D. H., Eib, D. W., Kenner, K. A. & Moon, R. T. Expression of the poly(A)-binding protein during development of Xenopus laevis. Mol. Cell. Biol. 9, 2756–2760 (1989).
    Article CAS PubMed PubMed Central Google Scholar
  58. Voeltz, G. K., Ongkasuwan, J., Standart, N. & Steitz, J. A. A novel embryonic poly(A) binding protein, ePAB, regulates mRNA deadenylation in Xenopus egg extracts. Genes Dev. 15, 774–788 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  59. Paris, J., Swenson, K., Piwnica-Worms, H. & Richter, J. D. Maturation-specific polyadenylation: in vitro activation by p34_cdc2_ and phosphorylation of a 58-kD CPE-binding protein. Genes Dev. 5, 1697–1708 (1991).
    Article CAS PubMed Google Scholar
  60. Reverte, C. G., Ahearn, M. D. & Hake, L. E. CPEB degradation during Xenopus oocyte maturation requires a pest domain and the 26S proteasome. Dev. Biol. 231, 447–458 (2001).
    Article CAS PubMed Google Scholar
  61. Morley, S. J. & Pain, V. M. Hormone-induced meiotic maturation in Xenopus oocytes occurs independently of p70s6k activation and is associated with enhanced initiation factor (eIF)-4F phosphorylation and complex formation. J. Cell. Sci. 108, 1751–1760 (1995).
    CAS PubMed Google Scholar
  62. Kuge, H. & Richter, J. D. Cytoplasmic 3′ poly(A) addition induces 5′ cap ribose methylation: implications for translational control of maternal mRNA. EMBO J. 14, 6301–6310 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  63. Kuge, H., Brownlee, G. G., Gershon, P. D. & Richter, J. D. Cap ribose methylation of c-mos mRNA stimulates translation and oocyte maturation in Xenopus laevis. Nucleic Acids Res. 26, 3208–3214 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  64. Gillian-Daniel, D. L., Gray, N. K., Astrom, J., Barkoff, A. & Wickens, M. Modifications of the 5′ cap of mRNAs during Xenopus oocyte maturation: independence from changes in poly(A) length and impact on translation. Mol. Cell. Biol. 18, 6152–6163 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  65. Schnierie, B. S., Gershon, P. D. & Moss, B. Cap-specific mRNA (nucleoside-O2′-)-methyltransferase and poly(A) polymerase stimulatory activities of Vaccinia virus are mediated by a single protein. Proc. Natl Acad. Sci. USA 89, 2897–2901 (1992).
    Article Google Scholar
  66. Groisman, I. et al. CPEB, maskin, and cyclin B1 mRNA at the mitotic apparatus: implications for local translational control of cell division. Cell 103, 435–447 (2000).The authors show that CPEB interacts with microtubules and is involved in the localization of cyclin B1 mRNA to the mitotic apparatus. Disruption of polyadenylation-induced translation inhibits cell division and promote spindle and centrosome defects.
    Article CAS PubMed Google Scholar
  67. Minshull, J., Blow, J. J. & Hunt, T. Translation of cyclin mRNA is necessary for extracts of activated Xenopus eggs to enter mitosis. Cell 56, 947–956 (1989).
    Article CAS PubMed Google Scholar
  68. Murray, A. W. & Kirschner, M. W. Cyclin synthesis drives the early embryonic cell cycle. Nature 339, 275–280 (1989).
    Article CAS PubMed Google Scholar
  69. Huang, J. & Raff, J. W. The disappearance of cyclin B at the end of mitosis is regulated spatially in Drosophila cells. EMBO J. 18, 2184–2195 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  70. Hagting, A., Karlsson, C., Clute, P., Jackman, M. & Pines, J. MPF localization is controlled by nuclear export. EMBO J. 17, 4127–4138 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  71. Christerson, L. B. & McKearin, D. M. orb is required for anteroposterior and dorsoventral patterning during Drosophila oogenesis. Genes Dev. 8, 614–628 (1994).
    Article CAS PubMed Google Scholar
  72. Chang, J. S., Tan, L. & Schedl, P. The Drosophila CPEB homolog, orb, is required for oskar protein expression in oocytes. Dev. Biol. 215, 91–106 (1999).
    Article CAS PubMed Google Scholar
  73. Tan, L., Chang, J. S., Costa, A. & Schedl, P. An autoregulatory feedback loop directs the localized expression of the Drosophila CPEB protein Orb in the developing oocyte. Development 128, 1159–1169 (2001).
    CAS PubMed Google Scholar
  74. Lantz, V., Chang, J. S., Horabin, J. I., Bopp, D. & Schedl, P. The Drosophila orb RNA-binding protein is required for the formation of the egg chamber and establishment of polarity. Genes Dev. 8, 598–613 (1994).
    Article CAS PubMed Google Scholar
  75. Huynh, J. & St Johnston, D. The role of BicD, egl, orb and the microtubules in the restriction of meiosis to the Drosophila oocyte. Development 127, 2785–2794 (2000).
    CAS PubMed Google Scholar
  76. Bally-Cuif, L., Schatz, W. J. & Ho, R. K. Characterization of the zebrafish Orb/CPEB-related RNA binding protein and localization of maternal components in the zebrafish oocyte. Mech. Dev. 77, 31–47 (1998).
    Article CAS PubMed Google Scholar
  77. Schroeder, K. E., Condic, M. L., Eisenberg, L. M. & Yost, H. J. Spatially regulated translation in embryos: asymmetric expression of maternal Wnt-11 along the dorsal-ventral axis in Xenopus. Dev. Biol. 214, 288–297 (1999).
    Article CAS PubMed Google Scholar
  78. Gebauer, F., Xu, W., Cooper, G. M. & Richter, J. D. Translational control by cytoplasmic polyadenylation of c-mos mRNA is necessary for oocyte maturation in the mouse. EMBO J. 13, 5712–5720 (1994).
    Article CAS PubMed PubMed Central Google Scholar
  79. Salles, F. J., Lieberfarb, M. E., Wreden, C., Gergen, J. P. & Strickland, S. Coordinate initiation of Drosophila development by regulated polyadenylation of maternal messenger RNAs. Science 266, 1996–1999 (1994).
    Article CAS PubMed Google Scholar
  80. Gebauer, F. & Richter, J. D. Mouse cytoplasmic polyadenylation element binding protein: an evolutionarily conserved protein that interacts with the cytoplasmic polyadenylation elements of c-mos mRNA. Proc. Natl Acad. Sci. USA 93, 14602–14607 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  81. Wu, L. et al. CPEB-mediated cytoplasmic polyadenylation and the regulation of experience-dependent translation of α-CaMKII mRNA at synapses. Neuron 21, 1129–1139 (1998).
    Article CAS PubMed Google Scholar
  82. Kang, H. & Schuman, E. M. A requirement for local protein synthesis in neurotrophin-induced hippocampal synaptic plasticity. Science 273, 1402–1406 (1996).
    Article CAS PubMed Google Scholar
  83. Huber, K. M., Kayser, M. S. & Bear, M. F. Role for rapid dendritic protein synthesis in hippocampal mGluR-dependent long-term depression. Science 288, 1254–1257 (2000).
    Article CAS PubMed Google Scholar
  84. Martin, K. C., Barad, M. & Kandel, E. R. Local protein synthesis and its role in synapse-specific plasticity. Curr. Opin. Neurobiol. 10, 587–592 (2000).
    Article CAS PubMed Google Scholar
  85. Casadio, A. et al. A transient, neuron-wide form of CREB-mediated long-term facilitation can be stabilized at specific synapses by local protein synthesis. Cell 99, 221–237 (1999).
    Article CAS PubMed Google Scholar
  86. Martin, K. C. et al. Synapse-specific, long-term facilitation of Aplysia sensory to motor synapses: a function for local protein synthesis in memory storage. Cell 91, 927–938 (1997).
    Article CAS PubMed Google Scholar
  87. Luitjens, C., Gallegos, M., Kraemer, B., Kimble, J. & Wickens, M. CPEB proteins control two key steps in spermatogenesis in C. elegans. Genes Dev. 14, 2596–2609 (2000).The authors describe four CPEB homologues in C. elegans: cpb-1, cpb-2, cpb-3 and fog-1 . RNA interference assays show that CPB-1 and FOG-1 have key functions in spermatogenesis whereas none seems to be required for oogenesis.
    Article CAS PubMed PubMed Central Google Scholar
  88. Hake, L. E., Mendez, R. & Richter, J. D. Specificity of RNA binding by CPEB: requirement for RNA recognition motifs and a novel zinc finger. Mol. Cell. Biol. 18, 685–693 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  89. Corpet, F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 16, 10881–11890 (1988).
    Article CAS PubMed PubMed Central Google Scholar
  90. Tay, J. & Richter, J. D. Germ cell differentiation and synaptonemal complex formation are disrupted in CPEB knockout mice. Dev. Cell (in the press).The authors show that in Cpeb -knockout mice, germ cell development is arrested at the pachytene stage. This defect originates in a failure of two CPE-containing mRNAs that encode synaptonemal complex proteins to be translated.
  91. Wells, S. E., Hillner, P. E., Vale, R. D. & Sachs, A. B. Circularization of mRNA by eukaryotic translation initiation factors. Mol. Cell 2, 135–140 (1998).The authors reconstitute the eIF4E–eIF4G–PABP complex with recombinant proteins, and show by atomic force microscopy that the complex can circularize capped, polyadenylated RNA.
    Article CAS PubMed Google Scholar
  92. Gallie, D. R. The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev. 5, 2108–2116 (1991).
    Article CAS PubMed Google Scholar
  93. Craig, A. W., Haghighat, A., Yu, A. T. & Sonenberg, N. Interaction of polyadenylate-binding protein with the eIF4G homologue PAIP enhances translation. Nature 392, 520–523 (1998).
    Article CAS PubMed Google Scholar
  94. Ostareck, D. H. et al. mRNA silencing in erythroid differentiation: hnRNP K and hnRNP E1 regulate 15-lipoxygenase translation from the 3′ end. Cell 89, 597–606 (1997).
    Article CAS PubMed Google Scholar

Download references