Co-evolution and plant resistance to natural enemies (original) (raw)

References

  1. Ehrlich, P. R. & Raven, P. H. Butterflies and plants: a study in coevolution. Evolution 18, 586–608 (1964).
    Google Scholar
  2. Thompson, J. N. The Coevolutionary Process (Univ. of Chicago Press, Chicago, 1994).
    Google Scholar
  3. Whittaker, R. H. & Feeny, P. P. Allelochemics: chemical interactions between species. Science 171, 757–770 (1971).
    ADS CAS PubMed Google Scholar
  4. Janzen, D. H. When is it coevolution? Evolution 34, 611–612 (1980).
    PubMed Google Scholar
  5. Gould, F. in Chemical Mediation of Coevolution (ed. Spencer, K. C.) 13–55 (Academic Press, New York, 1988).
    Google Scholar
  6. Berenbaum, M. R. & Zangerl, A. R. in Chemical Mediation of Coevolution (ed. Spencer, K. C.) 113–132 (Academic Press, New York, 1988).
    Google Scholar
  7. Rausher, M. D. in Evolutionary Perspectives in Insect Chemical Ecology (eds Roitberg, B. D. & Isman, M. B.) 20–88 (Routledge, Chapman & Hall, New York, 1992).
    Google Scholar
  8. Hatchett, J. H. & Gallun, R. L. Frequency of Hessian fly, Mayteiola destructor, races in field populations. Ann. Entomol. Soc. Am. 61, 1446–1449 (1968).
    Google Scholar
  9. Gallun, R. L. Genetic basis of Hessian fly epidemics. Ann. NY Acad. Sci. 287, 223–229 (1977).
    ADS Google Scholar
  10. Foster, J. E., Ohm, H. W., Patterson, F. L. & Taylor, P. L. Effectiveness of deploying single gene resistances in wheat for controlling damage by the Hessian fly (Diptera: Cecidomyiidae). Environ. Entomol. 20, 964–969 (1991).
    Google Scholar
  11. Rosenthal, G. A., Dahlman, D. L. & Janzen, D. H. A novel means for dealing with L-canavanine, a toxic metabolite. Science 192, 256–258 (1976).
    ADS CAS PubMed Google Scholar
  12. Berenbaum, M. R. & Zangerl, A. R. Chemical phenotype matching between a plant and its insect herbivore. Proc. Natl Acad. Sci. USA 95, 13743–13748 (1998).
    ADS CAS PubMed PubMed Central Google Scholar
  13. Shirley, B. W. Flavonoid biosynthesis: 'new' functions for an old pathway. Trends Plant Sci. 11, 377–382 (1996).
    Google Scholar
  14. Muller, C. H. The “co-” in coevolution. Science 164, 197–198 (1969).
    ADS CAS PubMed Google Scholar
  15. Robinson, T. Metabolism and function of alkaloids in plants. Science 184, 430–435 (1974).
    ADS CAS PubMed Google Scholar
  16. Seigler, D. & Price, P. W. Secondary compounds in plants: primary functions. Am. Nat. 110, 101–105 (1976).
    CAS Google Scholar
  17. Koes, R. E., Quattrocchio, F. & Mol, J. N. M. The flavonoid biosynthetic pathway in plants: function and evolution. BioEssays 16, 123–132 (1994).
    CAS Google Scholar
  18. Seigler, D. S. Primary roles for secondary compounds. Biochem. System. Ecol. 5, 195–199.
    CAS Google Scholar
  19. Jermy, T. Insect–host-plant relationship - co-evolution or sequential evolution? Symp. Biol. Hung. 16, 109–113 (1976).
    Google Scholar
  20. Jermy, T. Evolution of insect/host plant relationships. Am. Nat. 124, 609–630 (1984).
    Google Scholar
  21. Rausher, M. D. Genetic analysis of coevolution between plants and their natural enemies. Trends Genet. 12, 212–217 (1996).
    CAS PubMed Google Scholar
  22. Strong, D. R., Lawton, J. H. & Southwood, R. Insects on Plants (Harvard Univ. Press, Cambridge, MA, 1984).
    Google Scholar
  23. Bernays, E. & Graham, M. On the evolution of host specificity in phytophagous arthropods. Ecology 69, 886–892 (1988).
    Google Scholar
  24. Mauricio, R. & Rausher, M. D. Experimental manipulation of putative selective agents provides evidence for the role of natural enemies in the evolution of plant defense. Evolution 51, 1435–1444 (1997).
    PubMed Google Scholar
  25. Schonle, I. & Bergelson, J. Evolutionary ecology of the tropane alkaloids of Datura stramonium L. (Solanaceae). Evolution 54, 778–788 (2000).
    Google Scholar
  26. Biere, A. & Antonovics, J. Sex-specific costs of resistance to the fungal pathogen Ustilago violacea (Microbotryum violaceum) in Silene alba . Evolution 50, 1098–1110 (1996).
    PubMed Google Scholar
  27. Simms, E. L. & Rausher, M. D. The evolution of resistance to herbivory in Ipomoea purpurea. II. Natural selection by insects and costs of resistance. Evolution 43, 573–585 (1989).
    PubMed Google Scholar
  28. Tiffin, P. & Rausher, M. D. Genetic constraints and selection acting on tolerance to herbivory in the common morning glory, Ipomoea purpurea . Am. Nat. 154, 700–716 (1999).
    PubMed Google Scholar
  29. Parker, J. E. & Coleman, M. J. Molecular intimacy between proteins specifying plant-pathogen recognition. Trends Biochem. Sci. 22, 291–296 (1997).
    CAS PubMed Google Scholar
  30. Hammond-Kosack, K. E. & Jones, J. D. G. Resistance gene-dependent plant defense responses. Plant Cell 8, 1773–1791 (1996).
    CAS PubMed PubMed Central Google Scholar
  31. De Wit, P. J. G. M. Pathogen avirulence and plant resistance: a key role for recognition. Trends Plant Sci. 2, 452–458 (1997).
    Google Scholar
  32. Parniske, M. et al. Novel disease resistance specificities result from sequence exchange between tandemly repeated genes at the Cf-4/9 locus of tomato. Cell 91, 821–832 (1997).
    CAS PubMed Google Scholar
  33. Wang, G.-L. et al. Xa21D encodes a receptor-like molecular with a leucine-rich repeat domain that determines race-specific recognition and is subject to adaptive evolution. Plant Cell 10, 765–779 (1998).
    CAS PubMed PubMed Central Google Scholar
  34. Meyers, B. C., Shen, K. A., Rohani, P., Gaut, B. S. & Michelmore, R. W. Receptor-like genes in the major resistance locus of lettuce are subject to divergent selection. Plant Cell 11, 1833–1846 (1998).
    Google Scholar
  35. McDowell, J. M. et al. Intragenic recombination and diversifying selection contribute to the evolution of downy mildew resistance at the RPP8 locus of Arabidopsis . Plant Cell 10, 1861–1874 (1998).
    CAS PubMed PubMed Central Google Scholar
  36. Li, W.-H. Molecular Evolution (Sinauer, Sunderland, MA, 1997).
    Google Scholar
  37. Bishop, J. G., Dean, A. M. & Mitchell-Olds, T. Rapid evolution in plant chitinases: molecular targets of selection in plant-pathogen coevolution. Proc. Natl Acad. Sci. USA 10, 5322–5327 (2000).
    ADS Google Scholar
  38. Simms, E. L. in Plant Resistance to Herbivores and Pathogens: Ecology, Evolution and Genetics (eds Fritz, R. S. & Simms, E. L.) 392–425 (Univ. of Chicago Press, Chicago, 1992).
    Google Scholar
  39. Fagerstrõm, T., Larsson, S. & Tenow, O. On optimal defense in plants. Funct. Ecol. 1, 73–81 (1987).
    Google Scholar
  40. Simms, E. L. & Rausher, M. D. Costs and benefits of plant defense to herbivory. Am. Nat. 130, 70–581 (1987).
    Google Scholar
  41. Berenbaum, M. R., Zangerl, A. R. & Nitao, J. K. Constraints on chemical coevolution: wild parsnips and the parsnip webworm. Evolution 40, 1215–1228 (1996).
    Google Scholar
  42. Bergelson, J. The effect of genotype and the environment on costs of resistance in lettuce. Am. Nat. 143, 349–359 (1994).
    Google Scholar
  43. Fineblum, W. L. & Rausher, M. D. Tradeoff between resistance and tolerance to herbivore damage in a morning glory. Nature 377, 517–520 (1995).
    ADS CAS Google Scholar
  44. Mauricio, R. Costs of resistance to natural enemies in field populations of the annual plant, Arabidopsis thaliana . Am. Nat. 151, 20–28 (1998).
    CAS PubMed Google Scholar
  45. Bergelson, J. & Purrington, C. B. Surveying patterns in the cost of resistance in plants. Am. Nat. 148, 536–558 (1996).
    Google Scholar
  46. Haughn, G. W. & Somerville, C. Sulfonylurea-resistant mutants of Arabidopsis thaliana . Mol. Gen. Genet. 204, 430–434 (1986).
    CAS Google Scholar
  47. Haughn, G. W., Smith, J., Mazur, B. & Somerville, C. Transformation with a mutant Arabidopsis acetolactate synthase gene renders tobacco resistant to sulfonylurea herbicides. Mol. Gen. Genet. 211, 266–271(1988).
    CAS Google Scholar
  48. Bergelson, J., Purrington, C. B., Palm, C. J. & Lopez-Guttierrez, J. C. Costs of resistance: a test using transgenic Arabidopsis thaliana . Proc. R. Soc. Lond. B 263, 1659–1663 (1996).
    ADS CAS Google Scholar
  49. Purrington, C.B. & Bergelson, J. Exploring the physiological basis of costs of herbicide resistance in Arabidopsis thaliana . Am. Nat. 154, S82–S91 (1999).
  50. Ewald, P. W. Evolution of Infectious Disease (Oxford Univ. Press, New York, 1994).
    Google Scholar
  51. Levin, B. R., Lipsitch, M. & Bonhoeffer, S. Population biology, evolution, and infectious disease: convergence and synthesis. Science 283, 806–809 (1999).
    CAS PubMed Google Scholar
  52. Law, R. & Grey, D. R. Evolution of yields from populations with age-specific cropping. Evol. Ecol. 3, 343–359 (1989).
    Google Scholar
  53. Heino, M. Management of evolving fish stocks. Can. J. Fish. Aquat. Sci. 55, 1971–1982 (1998).
    Google Scholar
  54. Murphy, E. J. & Rodhouse, P. G. Rapid selection effects in a short-lived semelparous squid species exposed to exploitation: inferences from the optimisation of life-history functions. Evol. Ecol. 13, 517–537 (1999).
    Google Scholar
  55. Hoffmann, A. A. & Parsons, P. A. Evolutionary Genetics and Environmental Stress (Oxford Univ. Press, New York, 1991).
    Google Scholar
  56. Meefe, G. K. & Carroll, C. R. Principles of Conservation Biology 2nd edn (Sinauer, Sunderland, MA, 1997).
    Google Scholar
  57. Landweber, L. F. & Pokrovskaya, I. D. Emergence of a dual-catalytic RNA with metal-specific cleavage and ligase activities: the spandrels of RNA evolution. Proc. Natl Acad. Sci. USA 96, 173–178 (1999).
    ADS CAS PubMed PubMed Central Google Scholar
  58. Landweber, L. F. Experimental RNA evolution. Trends Ecol. Evol. 14, 353–358 (1999).
    CAS PubMed Google Scholar
  59. Proceedings of the Fourth International Meeting on DNA based Computers. Biosystems 52 (1999).
  60. Gould, F. Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. Annu. Rev. Entomol. 43, 701–726 (1998).
    CAS PubMed Google Scholar
  61. van Emden, H. F. Plant insect relationships and pest control. World Rev. Pest Control 5, 115–123 (1966).
    Google Scholar
  62. Roush, R. T. in Advances in Insect Control: The Role of Transgenic Plants (eds Carozzi, N. & Koziel, M.) 271–294 (Taylor & Francis, London, 1997).
    Google Scholar
  63. Environmental Protection Agency. Plant pesticides resistance management. Fed. Regist. 62(36) (1997).
  64. Fischoff, D. A. Management of lepidopteran pests with insect resistant cotton: recommended approaches. Proc. Beltwide Cotton Res. Conf. Natl Cotton Counc. Am., Memphis, TN, 751–753 (1992).
  65. Fischoff, D. A. in Biotechnology and Integrated Pest Management (ed. Persley, G. J.) 214–227 (CAB Int., Oxon, 1996).
    Google Scholar
  66. Roush, R. T. & Plapp, F. W. Effects of insecticide resistance on biotic potential of the house fly (Musca domestica) (Diptera: Muscidae). J. Econ. Entomol. 75, 708–713 (1982).
    CAS PubMed Google Scholar
  67. Fry, J. D. Trade-offs in fitness on different hosts: evidence from a selection experiment with a phytophagous mite. Am. Nat. 136, 569–580 (1990).
    Google Scholar
  68. Groeters, F. R., Tabashnik, B. E., Finson, N. & Johnson, M. W. Fitness costs of resistance to Bacillus thuringiensis in the diamondback moth (Plutella xylostella). Evolution 48, 197–201 (1994).
    PubMed Google Scholar
  69. Wood, R. J. & Bishop, J. A. in Genetic Consequences of Man Made Change (eds Bishop, J. A. & Cook, L. M.) 53–96 (Academic, London, 1981).
    Google Scholar
  70. Hamma, H., Suzuki, K. & Yanaka, H. Inheritance and stability of resistance to Bacillus thuringiensis formulations of the diamondback moth, Plutella xylostella (Linnaeus) (Lepidoptera: Yponomeutridae). Appl. Entomol. Zool. 27, 355–362 (1992).
    Google Scholar
  71. Tabashnik, B. E., Finson, N., Groeters, F. R., Moar, W. J. & Johnson, M. W. Reversal of resistance to Bacillus thuringiensis in Plutella xylostella . Proc. Natl Acad. Sci. USA 91, 4120–4124 (1994).
    ADS CAS PubMed PubMed Central Google Scholar
  72. Perez, C. J., Shelton, A. M. & Roush, R. T. Managing diamondback moth (Lepidoptera: Plutellidae) resistance to folar applications of Bacillus thuringiensis: testing strategies in field cages. J. Econ. Entomol. 90, 1462–1470 (1997).
    Google Scholar
  73. Liu, Y. B. & Tabashnik, B. E. Experimental evidence that refuges delay insect adaptation to Bacillus thuringiensis . Proc. R. Soc. Lond. B 264, 605–610 (1997).
    ADS Google Scholar
  74. Shelton, A. M., Tang, J. D., Roush, R. T., Metz, T. D. & Earle, E. D. Field tests on managing resistance to Bt-engineered plants. Nature Biotechnol. 18, 339–342 (2000).
    CAS Google Scholar
  75. Cox, T. S. & Hatchett, J. H.. Genetic model for wheat/Hessian fly (Diptera: Cecidomyiidae) interaction: strategies for deployment of resistance genes in wheat cultivars. Environ. Entomol. 15, 24–31 (1986).
    Google Scholar
  76. Gould, F. The evolutionary potential of crop pests. Am. Sci. 79, 496–507 (1991).
    ADS Google Scholar
  77. Roush, R. T. Two-toxin strategies for management of insecticidal transgenic crops: can pyramiding succeed where pesticide mixtures have not? Phil. Trans. R. Soc. Lond. B 353, 1777–1786 (1998).
    CAS Google Scholar
  78. Roush, R. T. Bt-transgenic crops: just another pretty insecticide or a chance for a new start in resistance management? Pesticide Sci. 51, 328–334 (1997).
    CAS Google Scholar
  79. Pryor, T. The origin and structure of fungal disease resistance in plants. Trends Genet. 3, 157–161 (1987).
    Google Scholar
  80. Painter, R. Insect Resistance in Crop Plants (Wiley, New York, 1951).
    Google Scholar
  81. Schafer, J. Tolerance to plant disease. Annu. Rev. Phytopathol. 9, 235–252 (1971).
    Google Scholar
  82. Stowe, K. A., Marquis, R. J., Hochwender, C. G. & Simms, E. L. The evolutionary ecology of tolerance to consumer damage. Annu. Rev. Ecol. Syst. 31, 565–595 (2000).
    Google Scholar
  83. Paige, K. N. & Whitham, D. G. Overcompensation in response to mammalian herbivory: the advantage of being eaten. Am. Nat. 143, 739–749 (1987).
    Google Scholar
  84. Agrawal, A. A. Overcompensation of plants in response to herbivory and the by-product benefits of mutualism Trends Plant Sci . 5, 309–313 (2000).
    CAS PubMed Google Scholar
  85. Rosenthal, J. P. & Kotanen, P. M. Terrestrial plant tolerance to herbivory. Trends Ecol. Evol. 9, 145–148 (1994).
    CAS PubMed Google Scholar
  86. Strauss, S. & Agrawal, A. The ecology and evolution of tolerance to herbivory. Trends Ecol. Evol. 14, 179–185 (1999).
    CAS PubMed Google Scholar
  87. Tiffin, P. Are tolerance, avoidance and antibiosis evolutionarily and ecologically equivalent responses of plants to herbivores? Am. Nat. 155, 128–138 (2000).
    PubMed Google Scholar
  88. Futuyma, D. J. & Gould, F. Associations of plants and insects in a deciduous forest. Ecol. Monogr. 49, 33–50 (1979).
    Google Scholar
  89. Thompson, J. N. Interaction and Coevolution. (Wiley, New York, 1982).
    Google Scholar
  90. Bernays, E. & Graham, M. On the evolution of host specificity in phytophagous arthropods. Ecology 69, 886–892 (1988).
    Google Scholar
  91. Rausher, M. D. in Evolution of Insect Pests: The Pattern of Variations (eds Kim, K. C & McPheron, B. A) 259–283 (Wiley, New York, 1993).
    Google Scholar
  92. Fry, J. D. The evolution of host specialization: are trade-offs overrated? Am. Nat. 148, S84–S107 (1996).
    Google Scholar
  93. Castillo-Chavez, C., Levin, S. A. & Gould, F. Physiological and behavioral adaptation to varying environments: a mathematical model. Evolution 42, 986–994 (1988).
    PubMed Google Scholar
  94. Feeny, P. in Herbivores: Their Interactions with Secondary Plant Metabolites (eds Rosenthall, G. A. & Berenbaum, M.) 1–44 (Academic, San Diego, 1992).
    Google Scholar
  95. Berenbaum, M. Coumarins and caterpillars: a case for coevolution. Evolution 37, 163–179 (1983).
    CAS PubMed Google Scholar
  96. Cohen, M. B., Schuler, M. A. & Berenbaum, M. R. A host-inducible cytochrome P-450 from a host-specific caterpillar: molecular cloning and evolution. Proc. Natl Acad. Sci. USA 89, 10920–10924 (1992).
    ADS CAS PubMed PubMed Central Google Scholar
  97. Rathcke, B. J. & Poole, R. W. Coevolutionary race continues: butterfly larval adaptation to plant trichomes. Science 187, 175–176 (1975).
    ADS CAS PubMed Google Scholar
  98. Dussourd, D. E. & Eisner, T. Vein-cutting behavior: insect counterploy to the latex defense of plants. Science 237, 898–901 (1987).
    ADS CAS PubMed Google Scholar
  99. Carroll, S. P. & Loye, J. E. Specialization of Jadera species (Himiptera: Rhopalidae) on the seeds of Sapindaceae (Sapindales), and coevolutionary responses of defense and attack. Ann. Entomol. Soc. Am. 80, 373–387 (1987).
    Google Scholar
  100. Carroll, S. P. & C. Boyd. Host race radiation in the soapberry bug: natural history with the history. Evolution 46, 1052–1069 (1992).
    PubMed Google Scholar
  101. Janzen, D. H. Coevolution of mutualism between ants and acacias in Central America. Evolution 20, 249–275 (1966).
    PubMed Google Scholar
  102. Eubanks, M. D., Nesci, K. A., Petersen, M. K., Liu, Z. & Sanchez, H. B. The exploitation of an ant-defended host plant by a shelter-building herbivore. Oecologia 109, 454–460 (1997).
    ADS PubMed Google Scholar
  103. Hartl, D. L. & Clark, A. G. Principles of Population Genetics 2nd edn (Sinauer, Sunderland, MA, 1989).
    Google Scholar
  104. Eggers-Schumacher, H. A. A comparison of the reproductive performance of insecticide-resistant and susceptible clones of Myzus persicae . Entomol. Exp. Appl. 34, 301–307 (1983).
    Google Scholar

Download references