Co-evolution and plant resistance to natural enemies (original) (raw)
References
Ehrlich, P. R. & Raven, P. H. Butterflies and plants: a study in coevolution. Evolution18, 586–608 (1964). Google Scholar
Thompson, J. N. The Coevolutionary Process (Univ. of Chicago Press, Chicago, 1994). Google Scholar
Whittaker, R. H. & Feeny, P. P. Allelochemics: chemical interactions between species. Science171, 757–770 (1971). ADSCASPubMed Google Scholar
Janzen, D. H. When is it coevolution? Evolution34, 611–612 (1980). PubMed Google Scholar
Gould, F. in Chemical Mediation of Coevolution (ed. Spencer, K. C.) 13–55 (Academic Press, New York, 1988). Google Scholar
Berenbaum, M. R. & Zangerl, A. R. in Chemical Mediation of Coevolution (ed. Spencer, K. C.) 113–132 (Academic Press, New York, 1988). Google Scholar
Rausher, M. D. in Evolutionary Perspectives in Insect Chemical Ecology (eds Roitberg, B. D. & Isman, M. B.) 20–88 (Routledge, Chapman & Hall, New York, 1992). Google Scholar
Hatchett, J. H. & Gallun, R. L. Frequency of Hessian fly, Mayteiola destructor, races in field populations. Ann. Entomol. Soc. Am.61, 1446–1449 (1968). Google Scholar
Gallun, R. L. Genetic basis of Hessian fly epidemics. Ann. NY Acad. Sci.287, 223–229 (1977). ADS Google Scholar
Foster, J. E., Ohm, H. W., Patterson, F. L. & Taylor, P. L. Effectiveness of deploying single gene resistances in wheat for controlling damage by the Hessian fly (Diptera: Cecidomyiidae). Environ. Entomol.20, 964–969 (1991). Google Scholar
Rosenthal, G. A., Dahlman, D. L. & Janzen, D. H. A novel means for dealing with L-canavanine, a toxic metabolite. Science192, 256–258 (1976). ADSCASPubMed Google Scholar
Berenbaum, M. R. & Zangerl, A. R. Chemical phenotype matching between a plant and its insect herbivore. Proc. Natl Acad. Sci. USA95, 13743–13748 (1998). ADSCASPubMedPubMed Central Google Scholar
Shirley, B. W. Flavonoid biosynthesis: 'new' functions for an old pathway. Trends Plant Sci.11, 377–382 (1996). Google Scholar
Robinson, T. Metabolism and function of alkaloids in plants. Science184, 430–435 (1974). ADSCASPubMed Google Scholar
Seigler, D. & Price, P. W. Secondary compounds in plants: primary functions. Am. Nat.110, 101–105 (1976). CAS Google Scholar
Koes, R. E., Quattrocchio, F. & Mol, J. N. M. The flavonoid biosynthetic pathway in plants: function and evolution. BioEssays16, 123–132 (1994). CAS Google Scholar
Seigler, D. S. Primary roles for secondary compounds. Biochem. System. Ecol.5, 195–199. CAS Google Scholar
Jermy, T. Insect–host-plant relationship - co-evolution or sequential evolution? Symp. Biol. Hung.16, 109–113 (1976). Google Scholar
Jermy, T. Evolution of insect/host plant relationships. Am. Nat.124, 609–630 (1984). Google Scholar
Rausher, M. D. Genetic analysis of coevolution between plants and their natural enemies. Trends Genet.12, 212–217 (1996). CASPubMed Google Scholar
Strong, D. R., Lawton, J. H. & Southwood, R. Insects on Plants (Harvard Univ. Press, Cambridge, MA, 1984). Google Scholar
Bernays, E. & Graham, M. On the evolution of host specificity in phytophagous arthropods. Ecology69, 886–892 (1988). Google Scholar
Mauricio, R. & Rausher, M. D. Experimental manipulation of putative selective agents provides evidence for the role of natural enemies in the evolution of plant defense. Evolution51, 1435–1444 (1997). PubMed Google Scholar
Schonle, I. & Bergelson, J. Evolutionary ecology of the tropane alkaloids of Datura stramonium L. (Solanaceae). Evolution54, 778–788 (2000). Google Scholar
Biere, A. & Antonovics, J. Sex-specific costs of resistance to the fungal pathogen Ustilago violacea (Microbotryum violaceum) in Silene alba . Evolution50, 1098–1110 (1996). PubMed Google Scholar
Simms, E. L. & Rausher, M. D. The evolution of resistance to herbivory in Ipomoea purpurea. II. Natural selection by insects and costs of resistance. Evolution43, 573–585 (1989). PubMed Google Scholar
Tiffin, P. & Rausher, M. D. Genetic constraints and selection acting on tolerance to herbivory in the common morning glory, Ipomoea purpurea . Am. Nat.154, 700–716 (1999). PubMed Google Scholar
Parker, J. E. & Coleman, M. J. Molecular intimacy between proteins specifying plant-pathogen recognition. Trends Biochem. Sci.22, 291–296 (1997). CASPubMed Google Scholar
Hammond-Kosack, K. E. & Jones, J. D. G. Resistance gene-dependent plant defense responses. Plant Cell8, 1773–1791 (1996). CASPubMedPubMed Central Google Scholar
De Wit, P. J. G. M. Pathogen avirulence and plant resistance: a key role for recognition. Trends Plant Sci.2, 452–458 (1997). Google Scholar
Parniske, M. et al. Novel disease resistance specificities result from sequence exchange between tandemly repeated genes at the Cf-4/9 locus of tomato. Cell91, 821–832 (1997). CASPubMed Google Scholar
Wang, G.-L. et al. Xa21D encodes a receptor-like molecular with a leucine-rich repeat domain that determines race-specific recognition and is subject to adaptive evolution. Plant Cell10, 765–779 (1998). CASPubMedPubMed Central Google Scholar
Meyers, B. C., Shen, K. A., Rohani, P., Gaut, B. S. & Michelmore, R. W. Receptor-like genes in the major resistance locus of lettuce are subject to divergent selection. Plant Cell11, 1833–1846 (1998). Google Scholar
McDowell, J. M. et al. Intragenic recombination and diversifying selection contribute to the evolution of downy mildew resistance at the RPP8 locus of Arabidopsis . Plant Cell10, 1861–1874 (1998). CASPubMedPubMed Central Google Scholar
Li, W.-H. Molecular Evolution (Sinauer, Sunderland, MA, 1997). Google Scholar
Bishop, J. G., Dean, A. M. & Mitchell-Olds, T. Rapid evolution in plant chitinases: molecular targets of selection in plant-pathogen coevolution. Proc. Natl Acad. Sci. USA10, 5322–5327 (2000). ADS Google Scholar
Simms, E. L. in Plant Resistance to Herbivores and Pathogens: Ecology, Evolution and Genetics (eds Fritz, R. S. & Simms, E. L.) 392–425 (Univ. of Chicago Press, Chicago, 1992). Google Scholar
Fagerstrõm, T., Larsson, S. & Tenow, O. On optimal defense in plants. Funct. Ecol.1, 73–81 (1987). Google Scholar
Simms, E. L. & Rausher, M. D. Costs and benefits of plant defense to herbivory. Am. Nat.130, 70–581 (1987). Google Scholar
Berenbaum, M. R., Zangerl, A. R. & Nitao, J. K. Constraints on chemical coevolution: wild parsnips and the parsnip webworm. Evolution40, 1215–1228 (1996). Google Scholar
Bergelson, J. The effect of genotype and the environment on costs of resistance in lettuce. Am. Nat.143, 349–359 (1994). Google Scholar
Fineblum, W. L. & Rausher, M. D. Tradeoff between resistance and tolerance to herbivore damage in a morning glory. Nature377, 517–520 (1995). ADSCAS Google Scholar
Mauricio, R. Costs of resistance to natural enemies in field populations of the annual plant, Arabidopsis thaliana . Am. Nat.151, 20–28 (1998). CASPubMed Google Scholar
Bergelson, J. & Purrington, C. B. Surveying patterns in the cost of resistance in plants. Am. Nat.148, 536–558 (1996). Google Scholar
Haughn, G. W. & Somerville, C. Sulfonylurea-resistant mutants of Arabidopsis thaliana . Mol. Gen. Genet.204, 430–434 (1986). CAS Google Scholar
Haughn, G. W., Smith, J., Mazur, B. & Somerville, C. Transformation with a mutant Arabidopsis acetolactate synthase gene renders tobacco resistant to sulfonylurea herbicides. Mol. Gen. Genet.211, 266–271(1988). CAS Google Scholar
Bergelson, J., Purrington, C. B., Palm, C. J. & Lopez-Guttierrez, J. C. Costs of resistance: a test using transgenic Arabidopsis thaliana . Proc. R. Soc. Lond. B263, 1659–1663 (1996). ADSCAS Google Scholar
Purrington, C.B. & Bergelson, J. Exploring the physiological basis of costs of herbicide resistance in Arabidopsis thaliana . Am. Nat.154, S82–S91 (1999).
Ewald, P. W. Evolution of Infectious Disease (Oxford Univ. Press, New York, 1994). Google Scholar
Levin, B. R., Lipsitch, M. & Bonhoeffer, S. Population biology, evolution, and infectious disease: convergence and synthesis. Science283, 806–809 (1999). CASPubMed Google Scholar
Law, R. & Grey, D. R. Evolution of yields from populations with age-specific cropping. Evol. Ecol.3, 343–359 (1989). Google Scholar
Heino, M. Management of evolving fish stocks. Can. J. Fish. Aquat. Sci.55, 1971–1982 (1998). Google Scholar
Murphy, E. J. & Rodhouse, P. G. Rapid selection effects in a short-lived semelparous squid species exposed to exploitation: inferences from the optimisation of life-history functions. Evol. Ecol.13, 517–537 (1999). Google Scholar
Hoffmann, A. A. & Parsons, P. A. Evolutionary Genetics and Environmental Stress (Oxford Univ. Press, New York, 1991). Google Scholar
Meefe, G. K. & Carroll, C. R. Principles of Conservation Biology 2nd edn (Sinauer, Sunderland, MA, 1997). Google Scholar
Landweber, L. F. & Pokrovskaya, I. D. Emergence of a dual-catalytic RNA with metal-specific cleavage and ligase activities: the spandrels of RNA evolution. Proc. Natl Acad. Sci. USA96, 173–178 (1999). ADSCASPubMedPubMed Central Google Scholar
Landweber, L. F. Experimental RNA evolution. Trends Ecol. Evol.14, 353–358 (1999). CASPubMed Google Scholar
Proceedings of the Fourth International Meeting on DNA based Computers. Biosystems52 (1999).
Gould, F. Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. Annu. Rev. Entomol.43, 701–726 (1998). CASPubMed Google Scholar
van Emden, H. F. Plant insect relationships and pest control. World Rev. Pest Control5, 115–123 (1966). Google Scholar
Roush, R. T. in Advances in Insect Control: The Role of Transgenic Plants (eds Carozzi, N. & Koziel, M.) 271–294 (Taylor & Francis, London, 1997). Google Scholar
Fischoff, D. A. Management of lepidopteran pests with insect resistant cotton: recommended approaches. Proc. Beltwide Cotton Res. Conf. Natl Cotton Counc. Am., Memphis, TN, 751–753 (1992).
Fischoff, D. A. in Biotechnology and Integrated Pest Management (ed. Persley, G. J.) 214–227 (CAB Int., Oxon, 1996). Google Scholar
Roush, R. T. & Plapp, F. W. Effects of insecticide resistance on biotic potential of the house fly (Musca domestica) (Diptera: Muscidae). J. Econ. Entomol.75, 708–713 (1982). CASPubMed Google Scholar
Fry, J. D. Trade-offs in fitness on different hosts: evidence from a selection experiment with a phytophagous mite. Am. Nat.136, 569–580 (1990). Google Scholar
Groeters, F. R., Tabashnik, B. E., Finson, N. & Johnson, M. W. Fitness costs of resistance to Bacillus thuringiensis in the diamondback moth (Plutella xylostella). Evolution48, 197–201 (1994). PubMed Google Scholar
Wood, R. J. & Bishop, J. A. in Genetic Consequences of Man Made Change (eds Bishop, J. A. & Cook, L. M.) 53–96 (Academic, London, 1981). Google Scholar
Hamma, H., Suzuki, K. & Yanaka, H. Inheritance and stability of resistance to Bacillus thuringiensis formulations of the diamondback moth, Plutella xylostella (Linnaeus) (Lepidoptera: Yponomeutridae). Appl. Entomol. Zool.27, 355–362 (1992). Google Scholar
Tabashnik, B. E., Finson, N., Groeters, F. R., Moar, W. J. & Johnson, M. W. Reversal of resistance to Bacillus thuringiensis in Plutella xylostella . Proc. Natl Acad. Sci. USA91, 4120–4124 (1994). ADSCASPubMedPubMed Central Google Scholar
Perez, C. J., Shelton, A. M. & Roush, R. T. Managing diamondback moth (Lepidoptera: Plutellidae) resistance to folar applications of Bacillus thuringiensis: testing strategies in field cages. J. Econ. Entomol.90, 1462–1470 (1997). Google Scholar
Liu, Y. B. & Tabashnik, B. E. Experimental evidence that refuges delay insect adaptation to Bacillus thuringiensis . Proc. R. Soc. Lond. B264, 605–610 (1997). ADS Google Scholar
Shelton, A. M., Tang, J. D., Roush, R. T., Metz, T. D. & Earle, E. D. Field tests on managing resistance to Bt-engineered plants. Nature Biotechnol.18, 339–342 (2000). CAS Google Scholar
Cox, T. S. & Hatchett, J. H.. Genetic model for wheat/Hessian fly (Diptera: Cecidomyiidae) interaction: strategies for deployment of resistance genes in wheat cultivars. Environ. Entomol.15, 24–31 (1986). Google Scholar
Gould, F. The evolutionary potential of crop pests. Am. Sci.79, 496–507 (1991). ADS Google Scholar
Roush, R. T. Two-toxin strategies for management of insecticidal transgenic crops: can pyramiding succeed where pesticide mixtures have not? Phil. Trans. R. Soc. Lond. B353, 1777–1786 (1998). CAS Google Scholar
Roush, R. T. Bt-transgenic crops: just another pretty insecticide or a chance for a new start in resistance management? Pesticide Sci.51, 328–334 (1997). CAS Google Scholar
Pryor, T. The origin and structure of fungal disease resistance in plants. Trends Genet.3, 157–161 (1987). Google Scholar
Painter, R. Insect Resistance in Crop Plants (Wiley, New York, 1951). Google Scholar
Schafer, J. Tolerance to plant disease. Annu. Rev. Phytopathol.9, 235–252 (1971). Google Scholar
Stowe, K. A., Marquis, R. J., Hochwender, C. G. & Simms, E. L. The evolutionary ecology of tolerance to consumer damage. Annu. Rev. Ecol. Syst.31, 565–595 (2000). Google Scholar
Paige, K. N. & Whitham, D. G. Overcompensation in response to mammalian herbivory: the advantage of being eaten. Am. Nat.143, 739–749 (1987). Google Scholar
Agrawal, A. A. Overcompensation of plants in response to herbivory and the by-product benefits of mutualism Trends Plant Sci . 5, 309–313 (2000). CASPubMed Google Scholar
Rosenthal, J. P. & Kotanen, P. M. Terrestrial plant tolerance to herbivory. Trends Ecol. Evol.9, 145–148 (1994). CASPubMed Google Scholar
Strauss, S. & Agrawal, A. The ecology and evolution of tolerance to herbivory. Trends Ecol. Evol.14, 179–185 (1999). CASPubMed Google Scholar
Tiffin, P. Are tolerance, avoidance and antibiosis evolutionarily and ecologically equivalent responses of plants to herbivores? Am. Nat.155, 128–138 (2000). PubMed Google Scholar
Futuyma, D. J. & Gould, F. Associations of plants and insects in a deciduous forest. Ecol. Monogr.49, 33–50 (1979). Google Scholar
Thompson, J. N. Interaction and Coevolution. (Wiley, New York, 1982). Google Scholar
Bernays, E. & Graham, M. On the evolution of host specificity in phytophagous arthropods. Ecology69, 886–892 (1988). Google Scholar
Rausher, M. D. in Evolution of Insect Pests: The Pattern of Variations (eds Kim, K. C & McPheron, B. A) 259–283 (Wiley, New York, 1993). Google Scholar
Fry, J. D. The evolution of host specialization: are trade-offs overrated? Am. Nat.148, S84–S107 (1996). Google Scholar
Castillo-Chavez, C., Levin, S. A. & Gould, F. Physiological and behavioral adaptation to varying environments: a mathematical model. Evolution42, 986–994 (1988). PubMed Google Scholar
Feeny, P. in Herbivores: Their Interactions with Secondary Plant Metabolites (eds Rosenthall, G. A. & Berenbaum, M.) 1–44 (Academic, San Diego, 1992). Google Scholar
Berenbaum, M. Coumarins and caterpillars: a case for coevolution. Evolution37, 163–179 (1983). CASPubMed Google Scholar
Cohen, M. B., Schuler, M. A. & Berenbaum, M. R. A host-inducible cytochrome P-450 from a host-specific caterpillar: molecular cloning and evolution. Proc. Natl Acad. Sci. USA89, 10920–10924 (1992). ADSCASPubMedPubMed Central Google Scholar
Rathcke, B. J. & Poole, R. W. Coevolutionary race continues: butterfly larval adaptation to plant trichomes. Science187, 175–176 (1975). ADSCASPubMed Google Scholar
Dussourd, D. E. & Eisner, T. Vein-cutting behavior: insect counterploy to the latex defense of plants. Science237, 898–901 (1987). ADSCASPubMed Google Scholar
Carroll, S. P. & Loye, J. E. Specialization of Jadera species (Himiptera: Rhopalidae) on the seeds of Sapindaceae (Sapindales), and coevolutionary responses of defense and attack. Ann. Entomol. Soc. Am.80, 373–387 (1987). Google Scholar
Carroll, S. P. & C. Boyd. Host race radiation in the soapberry bug: natural history with the history. Evolution46, 1052–1069 (1992). PubMed Google Scholar
Janzen, D. H. Coevolution of mutualism between ants and acacias in Central America. Evolution20, 249–275 (1966). PubMed Google Scholar
Eubanks, M. D., Nesci, K. A., Petersen, M. K., Liu, Z. & Sanchez, H. B. The exploitation of an ant-defended host plant by a shelter-building herbivore. Oecologia109, 454–460 (1997). ADSPubMed Google Scholar
Hartl, D. L. & Clark, A. G. Principles of Population Genetics 2nd edn (Sinauer, Sunderland, MA, 1989). Google Scholar
Eggers-Schumacher, H. A. A comparison of the reproductive performance of insecticide-resistant and susceptible clones of Myzus persicae . Entomol. Exp. Appl.34, 301–307 (1983). Google Scholar