Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae (original) (raw)

References

  1. Mitelman, F. Catalog of Chromosome Aberration in Cancer (Wiley Liss, New York, 1991).
    Google Scholar
  2. Lengauer, C., Kinzler, K. W. & Voelstein, B. Genetic instabilities in human cancers. Nature 396, 643–649 (1998).
    Article ADS CAS Google Scholar
  3. Padilla-Nash, H. M. et al. Molecular cytogenetic analysis of the bladder carcinoma cell line BK-10 by spectral karyotyping. Genes Chromosom. Cancer 25, 53–59 (1999).
    Article CAS Google Scholar
  4. Chen, C. & Kolodner, R. D. Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nature Genet. 23, 81–85 (1999).
    Article CAS Google Scholar
  5. Myung, K., Datta, A. & Kolodner, R. D. Suppression of spontaneous chromosomal rearrangements by the S-phase checkpoint in Saccharomyces cerevisiae. Cell 104, 397–408 (2001).
    Article CAS Google Scholar
  6. Lundblad, V. DNA ends: maintenance of chromosome termini versus repair of double strand breaks. Mut. Res. 451, 227–240 (2000).
    Article CAS Google Scholar
  7. Bryan, T. M. & Cech, T. R. Telomerase and the maintenance of chromosome ends. Curr. Opin. Cell Biol. 11, 318–324 (1999).
    Article CAS Google Scholar
  8. Grandin, N., Reed, S. I. & Charbonneau, M. Stn1, a new Saccharomyces cerevisiae protein, is implicated in telomere size regulation in association with Cdc13. Genes Dev. 11, 512–527 (1997).
    Article CAS Google Scholar
  9. Lahaye, A., Stahl, H., Thines-Sempoux, D. & Foury, F. PIF1: a DNA helicase in yeast mitochondria. EMBO J. 10, 997–1007 (1991).
    Article CAS Google Scholar
  10. Schulz, V. & Zakian, V. A. The Saccharomyces PIF1 DNA helicase inhibits telomere elongation and de novo telomere formation. Cell 76, 145–155 (1994).
    Article CAS Google Scholar
  11. Zhou, J.-Q., Monson, E. K., Teng, S.-C., Schulz, V. P. & Zakian, V. A. Pif1p helicase, a catalytic inhibitor of telomerase in yeast. Science 289, 771–774 (2000).
    Article ADS CAS Google Scholar
  12. Diede, S. J. & Gottschling, D. E. Telomerase-mediated telomere addition in vivo requires DNA primase and DNA polymerases α and δ. Cell 99, 723–733 (1999).
    Article CAS Google Scholar
  13. Chen, C., Umezu, K. & Kolodner, R. D. Chromosomal rearrangements occur in S. cerevisiae rfa1 mutator mutants due to mutagenic lesions processed by double-strand-break repair. Mol. Cell 2, 9–22 (1998).
    Article CAS Google Scholar
  14. Lee, S. E., Paques, F., Sylvan, J. & Haber, J. E. Role of yeast SIR genes and mating type in directing DNA double-strand breaks to homologous and non-homologous repair paths. Curr. Biol. 9, 767–770 (1999).
    Article CAS Google Scholar
  15. Pennock, E., Buckley, K. & Lundblad, V. Cdc13 delivers separate complexes to the telomere for end protection and replication. Cell 104, 387–396 (2001).
    Article CAS Google Scholar
  16. Haber, J. E. Exploring the pathways of homologous recombination. Curr. Opin. Cell Biol. 4, 401–412 (1992).
    Article CAS Google Scholar
  17. Lewis, L. K. & Resnick, M. A. Tying up loose ends: nonhomologous end-joining in Saccharomyces cerevisiae. Mut. Res. 451, 71–89 (2000).
    Article CAS Google Scholar
  18. Lee, S. E. et al. Saccharomyces Ku70, Mre11/Rad50, and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell 94, 399–409 (1998).
    Article CAS Google Scholar
  19. Signon, L., Malkova, A., Naylor, M. L., Klein, H. & Haber, J. E. Genetic requirements for RAD51- and _RAD54-_independent break-induced replication repair of a chromosomal double-strand break. Mol. Cell. Biol. 21, 2048–2056 (2001).
    Article CAS Google Scholar
  20. Bai, Y. & Symington, L. S. A Rad52 homolog is required for RAD51-independent mitotic recombination in Saccharomyces cerevisiae. Genes Dev. 10, 2025–2037 (1996).
    Article CAS Google Scholar
  21. Chen, Q., Ijpma, A. & Greider, C. W. Two survivor pathways that allow growth in the absence of telomerase are generated by distinct telomere recombination events. Mol. Cell. Biol. 21, 1819–1827 (2001).
    Article CAS Google Scholar
  22. Teo, S. H. & Jackson, S. P. Identification of Saccharomyces cerevisiae DNA ligase IV: involvement in DNA double-strand break-repair. EMBO J. 16, 4788–4795 (1997).
    Article CAS Google Scholar
  23. Herrmann, G., Lindahl, T. & Schar, P. Saccharomyces cerevisiae LIF1: a function involved in DNA double-strand break repair related to mammalian XRCC4. EMBO J. 17, 4188–4198 (1998).
    Article CAS Google Scholar
  24. Moore, J. K. & Haber, J. E. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol. Cell Biol. 16, 2164–2173 (1996).
    Article CAS Google Scholar
  25. Boulton, S. J. & Jackson, S. P. Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. EMBO J. 15, 5093–5103 (1996).
    Article CAS Google Scholar
  26. Michel, B. Replication fork arrest and DNA recombination. Trends Biochem. Sci. 25, 173–178 (2000).
    Article CAS Google Scholar
  27. Vessey, C. J., Norbury, C. J. & Hickson, I. D. Genetic disorders associated with cancer predisposition and genomic instability. Prog. Nucleic Acid Res. Mol. Biol. 63, 189–221 (1999).
    Article CAS Google Scholar
  28. Petrini, J. H. J. The Mre11 complex and ATM: collaborating to navigate S phase. Curr. Opin. Cell Biol. 12, 293–296 (2000).
    Article CAS Google Scholar
  29. Khanna, K. K. & Jackson, S. P. DNA double-strand breaks: signaling, repair and the cancer connection. Nature Genet. 27, 247–254 (2001).
    Article CAS Google Scholar
  30. Nugent, C. I., Hughes, T. R., Lue, N. F. & Lundblad, V. Cdc13p: A single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. Science 274, 249–252 (1996).
    Article ADS CAS Google Scholar

Download references