Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae (original) (raw)
References
Mitelman, F. Catalog of Chromosome Aberration in Cancer (Wiley Liss, New York, 1991). Google Scholar
Lengauer, C., Kinzler, K. W. & Voelstein, B. Genetic instabilities in human cancers. Nature396, 643–649 (1998). ArticleADSCAS Google Scholar
Padilla-Nash, H. M. et al. Molecular cytogenetic analysis of the bladder carcinoma cell line BK-10 by spectral karyotyping. Genes Chromosom. Cancer25, 53–59 (1999). ArticleCAS Google Scholar
Chen, C. & Kolodner, R. D. Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nature Genet.23, 81–85 (1999). ArticleCAS Google Scholar
Myung, K., Datta, A. & Kolodner, R. D. Suppression of spontaneous chromosomal rearrangements by the S-phase checkpoint in Saccharomyces cerevisiae. Cell104, 397–408 (2001). ArticleCAS Google Scholar
Lundblad, V. DNA ends: maintenance of chromosome termini versus repair of double strand breaks. Mut. Res.451, 227–240 (2000). ArticleCAS Google Scholar
Bryan, T. M. & Cech, T. R. Telomerase and the maintenance of chromosome ends. Curr. Opin. Cell Biol.11, 318–324 (1999). ArticleCAS Google Scholar
Grandin, N., Reed, S. I. & Charbonneau, M. Stn1, a new Saccharomyces cerevisiae protein, is implicated in telomere size regulation in association with Cdc13. Genes Dev.11, 512–527 (1997). ArticleCAS Google Scholar
Lahaye, A., Stahl, H., Thines-Sempoux, D. & Foury, F. PIF1: a DNA helicase in yeast mitochondria. EMBO J.10, 997–1007 (1991). ArticleCAS Google Scholar
Schulz, V. & Zakian, V. A. The Saccharomyces PIF1 DNA helicase inhibits telomere elongation and de novo telomere formation. Cell76, 145–155 (1994). ArticleCAS Google Scholar
Zhou, J.-Q., Monson, E. K., Teng, S.-C., Schulz, V. P. & Zakian, V. A. Pif1p helicase, a catalytic inhibitor of telomerase in yeast. Science289, 771–774 (2000). ArticleADSCAS Google Scholar
Diede, S. J. & Gottschling, D. E. Telomerase-mediated telomere addition in vivo requires DNA primase and DNA polymerases α and δ. Cell99, 723–733 (1999). ArticleCAS Google Scholar
Chen, C., Umezu, K. & Kolodner, R. D. Chromosomal rearrangements occur in S. cerevisiae rfa1 mutator mutants due to mutagenic lesions processed by double-strand-break repair. Mol. Cell2, 9–22 (1998). ArticleCAS Google Scholar
Lee, S. E., Paques, F., Sylvan, J. & Haber, J. E. Role of yeast SIR genes and mating type in directing DNA double-strand breaks to homologous and non-homologous repair paths. Curr. Biol.9, 767–770 (1999). ArticleCAS Google Scholar
Pennock, E., Buckley, K. & Lundblad, V. Cdc13 delivers separate complexes to the telomere for end protection and replication. Cell104, 387–396 (2001). ArticleCAS Google Scholar
Haber, J. E. Exploring the pathways of homologous recombination. Curr. Opin. Cell Biol.4, 401–412 (1992). ArticleCAS Google Scholar
Lewis, L. K. & Resnick, M. A. Tying up loose ends: nonhomologous end-joining in Saccharomyces cerevisiae. Mut. Res.451, 71–89 (2000). ArticleCAS Google Scholar
Lee, S. E. et al. Saccharomyces Ku70, Mre11/Rad50, and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell94, 399–409 (1998). ArticleCAS Google Scholar
Signon, L., Malkova, A., Naylor, M. L., Klein, H. & Haber, J. E. Genetic requirements for RAD51- and _RAD54-_independent break-induced replication repair of a chromosomal double-strand break. Mol. Cell. Biol.21, 2048–2056 (2001). ArticleCAS Google Scholar
Bai, Y. & Symington, L. S. A Rad52 homolog is required for RAD51-independent mitotic recombination in Saccharomyces cerevisiae. Genes Dev.10, 2025–2037 (1996). ArticleCAS Google Scholar
Chen, Q., Ijpma, A. & Greider, C. W. Two survivor pathways that allow growth in the absence of telomerase are generated by distinct telomere recombination events. Mol. Cell. Biol.21, 1819–1827 (2001). ArticleCAS Google Scholar
Teo, S. H. & Jackson, S. P. Identification of Saccharomyces cerevisiae DNA ligase IV: involvement in DNA double-strand break-repair. EMBO J.16, 4788–4795 (1997). ArticleCAS Google Scholar
Herrmann, G., Lindahl, T. & Schar, P. Saccharomyces cerevisiae LIF1: a function involved in DNA double-strand break repair related to mammalian XRCC4. EMBO J.17, 4188–4198 (1998). ArticleCAS Google Scholar
Moore, J. K. & Haber, J. E. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol. Cell Biol.16, 2164–2173 (1996). ArticleCAS Google Scholar
Boulton, S. J. & Jackson, S. P. Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. EMBO J.15, 5093–5103 (1996). ArticleCAS Google Scholar
Michel, B. Replication fork arrest and DNA recombination. Trends Biochem. Sci.25, 173–178 (2000). ArticleCAS Google Scholar
Vessey, C. J., Norbury, C. J. & Hickson, I. D. Genetic disorders associated with cancer predisposition and genomic instability. Prog. Nucleic Acid Res. Mol. Biol.63, 189–221 (1999). ArticleCAS Google Scholar
Petrini, J. H. J. The Mre11 complex and ATM: collaborating to navigate S phase. Curr. Opin. Cell Biol.12, 293–296 (2000). ArticleCAS Google Scholar
Khanna, K. K. & Jackson, S. P. DNA double-strand breaks: signaling, repair and the cancer connection. Nature Genet.27, 247–254 (2001). ArticleCAS Google Scholar
Nugent, C. I., Hughes, T. R., Lue, N. F. & Lundblad, V. Cdc13p: A single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. Science274, 249–252 (1996). ArticleADSCAS Google Scholar