Reproductive pair correlations and the clustering of organisms (original) (raw)
- Letter
- Published: 19 July 2001
Nature volume 412, pages 328–331 (2001)Cite this article
- 1359 Accesses
- 1 Altmetric
- Metrics details
Abstract
Clustering of organisms can be a consequence of social behaviour, or of the response of individuals to chemical and physical cues1. Environmental variability can also cause clustering: for example, marine turbulence transports plankton2,3,4,5,6,7,8 and produces chlorophyll concentration patterns in the upper ocean9,10,11. Even in a homogeneous environment, nonlinear interactions between species12,13,14 can result in spontaneous pattern formation. Here we show that a population of independent, random-walking organisms (‘brownian bugs’), reproducing by binary division and dying at constant rates, spontaneously aggregates. Using an individual-based model, we show that clusters form out of spatially homogeneous initial conditions without environmental variability, predator–prey interactions, kinesis or taxis. The clustering mechanism is reproductively driven—birth must always be adjacent to a living organism. This clustering can overwhelm diffusion and create non-poissonian correlations between pairs (parent and offspring) or organisms, leading to the emergence of patterns.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Additional access options:
Similar content being viewed by others
References
- Flierl, G., Grünbaum, D., Levin, S. & Olson, D. From individuals to aggregations: the interplay between behaviour and physics. J. Theor. Biol. 196, 397–454 (1999).
Article CAS Google Scholar - Abraham, E. R. The generation of plankton patchiness by turbulent stirring. Nature 391, 577–580 (1998).
Article ADS CAS Google Scholar - Denman, K. L., Okubo, A. & Platt, T. The chlorophyll fluctuation spectrum in the sea. Limnol. Oceanogr. 22, 1033–1038 (1977).
Article ADS CAS Google Scholar - Franks, P. J. S. Spatial pattern in dense algal blooms. Limnol. Oceanogr. 42, 1297–1305 (1997).
Article ADS Google Scholar - Kierstead, H. & Slobodkin, L. B. The size of water masses containing plankton blooms. J. Mar. Res. 12, 141–147 (1953).
Google Scholar - Neufeld, Z., López, C. & Haynes, P. H. Smooth-filament transition of active tracer fields stirred by chaotic advection. Phys. Rev. Lett. 82, 2606–2609 (1999).
Article ADS CAS Google Scholar - Robinson, A. R. On the theory of advective effects on biological dynamics in the sea. Proc. R. Soc. Lond. A 453, 2295–2324 (1997).
Article ADS Google Scholar - Steele, J. H. & Henderson, E. W. A simple model for plankton patchiness. J. Plankton Res. 14, 1397–1403 (1992).
Article Google Scholar - Gower, J. F. R., Denman, K. L. & Holyer, R. J. Phytoplankton patchiness indicates the fluctuation spectrum of mesoscale oceanic structure. Nature 288, 157–159 (1980).
Article ADS Google Scholar - Lesieur, M. & Sadourny, R. Satellite-sensed turbulent ocean structure. Nature 294, 673 (1980).
Article Google Scholar - Abraham, E. R. et al. Importance of stirring in the development of an iron-fertilized phytoplankton bloom. Nature 407, 727–730 (2000).
Article ADS CAS Google Scholar - Durrett, R. & Levin, S. The importance of being discrete (and spatial). Theor. Pop. Biol. 46, 363–394 (1994).
Article Google Scholar - Levin, S. & Segel, L. A. Hypothesis for origin of planktonic patchiness. Nature 259, 659 (1976).
Article ADS Google Scholar - Segel, L. A. & Jackson, J. L. Dissipative structure: an explanation and an ecological example. J. Theor. Biol. 37, 545–559 (1972).
Article CAS Google Scholar - Skellam, J. G. Random dispersion in theoretical populations. Biometrika 38, 196–218 (1951).
Article MathSciNet CAS Google Scholar - Keeling, M. J., Mezić, I., Hendry, R. J., McGlade, J. & Rand, D. A. Characteristic length scales of spatial models in ecology via fluctuation analysis. Phil. Trans. R. Soc. Lond. B 352, 1589–1601 (1997).
Article ADS Google Scholar - Pascual, M. & Levin, S. A. From individuals to population densities: searching for the intermediate scale of nontrivial determinism. Ecology 80, 2225–2236 (1999).
Article Google Scholar - Rand, D. A. & Wilson, H. B. Using spatio-temporal chaos and intermediate scale determinism in artificial ecologies to quantify spatially extended systems. Proc. R. Soc. Lond. B 259, 55–63 (1995).
Article ADS Google Scholar - Batchelor, G. K. The effect of turbulence on material lines and surfaces. Proc. R. Soc. Lond. 213, 349–366 (1952).
Article ADS MathSciNet Google Scholar - Batchelor, G. K. Small-scale variation of convected quantities like temperature in turbulent fluid. Part 1. General discussion and the case of small conductivity. J. Fluid Mech. 5, 113–133 (1959).
Article ADS MathSciNet Google Scholar - Kraichnan, R. H. Convection of a passive scalar by a quasi-uniform random stretching field. J. Fluid Mech. 64, 737–762 (1974).
Article ADS MathSciNet Google Scholar - Pierrehumbert, R. T. On tracer microstructure in the large-eddy dominated regime. Chaos Solitions Fractals 4, 1091–1110 (1994).
Article ADS Google Scholar - van Kampen, N. G. Stochastic Processes in Physics and Chemistry Ch. 2 (North-Holland, Amsterdam, 1981).
MATH Google Scholar - Pierrehumbert, R. T. in Nonlinear Phenomena in Atmospheric and Oceanic Sciences Ch. 2 (Springer, New York, 1991).
Google Scholar - Harris, T. E. The Theory of Branching Processes Ch. 1 (Springer, Berlin, 1963).
Book Google Scholar - Le Gall, J. F. Spatial Branching Processes, Random Snakes and Partial Differential Equations, Lectures in Mathematics, ETH Zürich (Birkhäuser, Basel, 1999).
Book Google Scholar
Acknowledgements
We thank E. Ben-Naim, R. Durrett, G. Flierl, P. Krapivsky, P. Morrison and F. Williams for discussion.
Author information
Authors and Affiliations
- Scripps Institution of Oceanography, University of California at San Diego, La Jolla, 92093-0230, California, USA
W. R. Young & G. Stuhne - Department of Maths & Computing, University of Southern Queensland, Toowoomba, 4352, Queensland, Australia
A. J. Roberts
Authors
- W. R. Young
You can also search for this author inPubMed Google Scholar - A. J. Roberts
You can also search for this author inPubMed Google Scholar - G. Stuhne
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toW. R. Young.
Rights and permissions
About this article
Cite this article
Young, W., Roberts, A. & Stuhne, G. Reproductive pair correlations and the clustering of organisms.Nature 412, 328–331 (2001). https://doi.org/10.1038/35085561
- Received: 14 November 2000
- Accepted: 04 June 2001
- Issue Date: 19 July 2001
- DOI: https://doi.org/10.1038/35085561
This article is cited by
Patchy nuclear chain reactions
- Eric Dumonteil
- Rian Bahran
- Andrea Zoia
Communications Physics (2021)
Diel vertical migration promotes zooplankton horizontal patchiness
- Bingzhang Chen
- Eiji Masunaga
- Hidekatsu Yamazaki
Journal of Oceanography (2021)
Turbulent coherent structures and early life below the Kolmogorov scale
- Madison S. Krieger
- Sam Sinai
- Martin A. Nowak
Nature Communications (2020)
Movement patterns of the grey field slug (Deroceras reticulatum) in an arable field
- John Ellis
- Natalia Petrovskaya
- Sergei Petrovskii
Scientific Reports (2020)
Sustainability of spatially distributed bacteria-phage systems
- Rasmus Skytte Eriksen
- Namiko Mitarai
- Kim Sneppen
Scientific Reports (2020)