Reproductive pair correlations and the clustering of organisms (original) (raw)

Nature volume 412, pages 328–331 (2001)Cite this article

Abstract

Clustering of organisms can be a consequence of social behaviour, or of the response of individuals to chemical and physical cues1. Environmental variability can also cause clustering: for example, marine turbulence transports plankton2,3,4,5,6,7,8 and produces chlorophyll concentration patterns in the upper ocean9,10,11. Even in a homogeneous environment, nonlinear interactions between species12,13,14 can result in spontaneous pattern formation. Here we show that a population of independent, random-walking organisms (‘brownian bugs’), reproducing by binary division and dying at constant rates, spontaneously aggregates. Using an individual-based model, we show that clusters form out of spatially homogeneous initial conditions without environmental variability, predator–prey interactions, kinesis or taxis. The clustering mechanism is reproductively driven—birth must always be adjacent to a living organism. This clustering can overwhelm diffusion and create non-poissonian correlations between pairs (parent and offspring) or organisms, leading to the emergence of patterns.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Flierl, G., Grünbaum, D., Levin, S. & Olson, D. From individuals to aggregations: the interplay between behaviour and physics. J. Theor. Biol. 196, 397–454 (1999).
    Article CAS Google Scholar
  2. Abraham, E. R. The generation of plankton patchiness by turbulent stirring. Nature 391, 577–580 (1998).
    Article ADS CAS Google Scholar
  3. Denman, K. L., Okubo, A. & Platt, T. The chlorophyll fluctuation spectrum in the sea. Limnol. Oceanogr. 22, 1033–1038 (1977).
    Article ADS CAS Google Scholar
  4. Franks, P. J. S. Spatial pattern in dense algal blooms. Limnol. Oceanogr. 42, 1297–1305 (1997).
    Article ADS Google Scholar
  5. Kierstead, H. & Slobodkin, L. B. The size of water masses containing plankton blooms. J. Mar. Res. 12, 141–147 (1953).
    Google Scholar
  6. Neufeld, Z., López, C. & Haynes, P. H. Smooth-filament transition of active tracer fields stirred by chaotic advection. Phys. Rev. Lett. 82, 2606–2609 (1999).
    Article ADS CAS Google Scholar
  7. Robinson, A. R. On the theory of advective effects on biological dynamics in the sea. Proc. R. Soc. Lond. A 453, 2295–2324 (1997).
    Article ADS Google Scholar
  8. Steele, J. H. & Henderson, E. W. A simple model for plankton patchiness. J. Plankton Res. 14, 1397–1403 (1992).
    Article Google Scholar
  9. Gower, J. F. R., Denman, K. L. & Holyer, R. J. Phytoplankton patchiness indicates the fluctuation spectrum of mesoscale oceanic structure. Nature 288, 157–159 (1980).
    Article ADS Google Scholar
  10. Lesieur, M. & Sadourny, R. Satellite-sensed turbulent ocean structure. Nature 294, 673 (1980).
    Article Google Scholar
  11. Abraham, E. R. et al. Importance of stirring in the development of an iron-fertilized phytoplankton bloom. Nature 407, 727–730 (2000).
    Article ADS CAS Google Scholar
  12. Durrett, R. & Levin, S. The importance of being discrete (and spatial). Theor. Pop. Biol. 46, 363–394 (1994).
    Article Google Scholar
  13. Levin, S. & Segel, L. A. Hypothesis for origin of planktonic patchiness. Nature 259, 659 (1976).
    Article ADS Google Scholar
  14. Segel, L. A. & Jackson, J. L. Dissipative structure: an explanation and an ecological example. J. Theor. Biol. 37, 545–559 (1972).
    Article CAS Google Scholar
  15. Skellam, J. G. Random dispersion in theoretical populations. Biometrika 38, 196–218 (1951).
    Article MathSciNet CAS Google Scholar
  16. Keeling, M. J., Mezić, I., Hendry, R. J., McGlade, J. & Rand, D. A. Characteristic length scales of spatial models in ecology via fluctuation analysis. Phil. Trans. R. Soc. Lond. B 352, 1589–1601 (1997).
    Article ADS Google Scholar
  17. Pascual, M. & Levin, S. A. From individuals to population densities: searching for the intermediate scale of nontrivial determinism. Ecology 80, 2225–2236 (1999).
    Article Google Scholar
  18. Rand, D. A. & Wilson, H. B. Using spatio-temporal chaos and intermediate scale determinism in artificial ecologies to quantify spatially extended systems. Proc. R. Soc. Lond. B 259, 55–63 (1995).
    Article ADS Google Scholar
  19. Batchelor, G. K. The effect of turbulence on material lines and surfaces. Proc. R. Soc. Lond. 213, 349–366 (1952).
    Article ADS MathSciNet Google Scholar
  20. Batchelor, G. K. Small-scale variation of convected quantities like temperature in turbulent fluid. Part 1. General discussion and the case of small conductivity. J. Fluid Mech. 5, 113–133 (1959).
    Article ADS MathSciNet Google Scholar
  21. Kraichnan, R. H. Convection of a passive scalar by a quasi-uniform random stretching field. J. Fluid Mech. 64, 737–762 (1974).
    Article ADS MathSciNet Google Scholar
  22. Pierrehumbert, R. T. On tracer microstructure in the large-eddy dominated regime. Chaos Solitions Fractals 4, 1091–1110 (1994).
    Article ADS Google Scholar
  23. van Kampen, N. G. Stochastic Processes in Physics and Chemistry Ch. 2 (North-Holland, Amsterdam, 1981).
    MATH Google Scholar
  24. Pierrehumbert, R. T. in Nonlinear Phenomena in Atmospheric and Oceanic Sciences Ch. 2 (Springer, New York, 1991).
    Google Scholar
  25. Harris, T. E. The Theory of Branching Processes Ch. 1 (Springer, Berlin, 1963).
    Book Google Scholar
  26. Le Gall, J. F. Spatial Branching Processes, Random Snakes and Partial Differential Equations, Lectures in Mathematics, ETH Zürich (Birkhäuser, Basel, 1999).
    Book Google Scholar

Download references

Acknowledgements

We thank E. Ben-Naim, R. Durrett, G. Flierl, P. Krapivsky, P. Morrison and F. Williams for discussion.

Author information

Authors and Affiliations

  1. Scripps Institution of Oceanography, University of California at San Diego, La Jolla, 92093-0230, California, USA
    W. R. Young & G. Stuhne
  2. Department of Maths & Computing, University of Southern Queensland, Toowoomba, 4352, Queensland, Australia
    A. J. Roberts

Authors

  1. W. R. Young
    You can also search for this author inPubMed Google Scholar
  2. A. J. Roberts
    You can also search for this author inPubMed Google Scholar
  3. G. Stuhne
    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toW. R. Young.

Rights and permissions

About this article

Cite this article

Young, W., Roberts, A. & Stuhne, G. Reproductive pair correlations and the clustering of organisms.Nature 412, 328–331 (2001). https://doi.org/10.1038/35085561

Download citation

This article is cited by