Failure of the ubiquitin–proteasome system in Parkinson's disease (original) (raw)
Forno, L. S. Neuropathology of Parkinson's disease. J. Neuropathol. Exp. Neurol.55, 259–272 (1996). ArticleCAS Google Scholar
Goedert, M. Alpha-synuclein and neurodegenerative diseases. Nature Rev. Neurosci.2, 492–501 (2001). ArticleCAS Google Scholar
Schapira, A. H. et al. Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson's disease. J. Neurochem.55, 2142–2145 (1990). ArticleCAS Google Scholar
Sian, J. et al. Alterations in glutathione levels in Parkinson's disease and other neurodegenerative disorders affecting basal ganglia. Ann. Neurol.36, 348–355 (1994). ArticleCAS Google Scholar
Dexter, D. T. Alterations in the levels of iron, ferritin and other trace metals in Parkinson's disease and other neurodegenerative diseases affecting the basal ganglia. Brain114, 1953–1975 (1991). Article Google Scholar
McNaught, K. S., Lee, M.-H., Hyun, D.-H. & Jenner, P. in Parkinson's Disease, Advances in Neurology (eds Calne, D. B. & Calne, S. M.) 73–82 (Lippincott, Williams and Wilkins, Philadelphia, 2001). Google Scholar
Halliwell, B. & Jenner, P. Impaired clearance of oxidised proteins in neurodegenerative diseases. Lancet351, 1510 (1998). ArticleCAS Google Scholar
Alam, Z. I. et al. A generalised increase in protein carbonyls in the brain in Parkinson's but not incidental Lewy body disease. J. Neurochem.69, 1326–1329 (1997). ArticleCAS Google Scholar
Lopiano, L. et al. Nuclear magnetic relaxation dispersion profiles of substantia nigra pars compacta in Parkinson's disease patients are consistent with protein aggregation. Neurochem. Int.37, 331–336 (2000). ArticleCAS Google Scholar
McNaught, K. S. & Jenner, P. Proteasomal function is impaired in substantia nigra in Parkinson's disease. Neurosci. Lett.297, 191–194 (2001). ArticleCAS Google Scholar
Sherman, M. Y. & Goldberg, A. L. Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron29, 15–32 (2001). ArticleCAS Google Scholar
Pickart, C. M. Ubiquitin in chains. Trends Biochem. Sci.25, 544–548 (2000). ArticleCAS Google Scholar
DeMartino, G. N. & Slaughter, C. A. The proteasome, a novel protease regulated by multiple mechanisms. J. Biol. Chem.274, 22123–22126 (1999). ArticleCAS Google Scholar
Pollanen, M. S., Dickson, D. W. & Bergeron, C. Pathology and biology of the Lewy body. J. Neuropathol. Exp. Neurol.52, 183–191 (1993). ArticleCAS Google Scholar
Golbe, L. I., Di Iorio, G., Bonavita, V., Miller, D. C. & Duvoisin, R. C. A large kindred with autosomal dominant Parkinson's disease. Ann. Neurol.27, 276–282 (1990). ArticleCAS Google Scholar
Spira, P. J., Sharpe, D. M., Halliday, G., Cavanagh, J. & Nicholson, G. A. Clinical and pathological features of a Parkinsonian syndrome in a family with an Ala53Thr α-synuclein mutation. Ann. Neurol.49, 313–319 (2001). ArticleCAS Google Scholar
Shashidharan, P. et al. TorsinA accumulation in Lewy bodies in sporadic Parkinson's disease. Brain Res.877, 379–381 (2000). ArticleCAS Google Scholar
Shimura, H. et al. Immunohistochemical and subcellular localization of Parkin protein: absence of protein in autosomal recessive juvenile parkinsonism patients. Ann. Neurol.45, 668–672 (1999). ArticleCAS Google Scholar
Shimura, H. et al. Ubiquitination of a new form of α-synuclein by parkin from human brain: implications for Parkinson's disease. Science293, 263–269 (2001). ArticleCAS Google Scholar
Lowe, J., McDermott, H., Landon, M., Mayer, R. J. & Wilkinson, K. D. Ubiquitin carboxyl-terminal hydrolase (PGP 9.5) is selectively present in ubiquitinated inclusion bodies characteristic of human neurodegenerative diseases. J. Pathol.161, 153–160 (1990). ArticleCAS Google Scholar
Ii, K., Ito, H., Tanaka, K. & Hirano, A. Immunocytochemical co-localization of the proteasome in ubiquitinated structures in neurodegenerative diseases and the elderly. J. Neuropathol. Exp. Neurol.56, 125–131 (1997). ArticleCAS Google Scholar
Good, P. F., Hsu, A., Werner, P., Perl, D. P. & Olanow, C. W. Protein nitration in Parkinson's disease. J. Neuropathol. Exp. Neurol.57, 338–342 (1998). ArticleCAS Google Scholar
Spillantini, M. G., Crowther, R. A., Jakes, R., Hasegawa, M. & Goedert, M. α-Synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with lewy bodies. Proc. Natl Acad. Sci. USA95, 6469–6473 (1998). ArticleCAS Google Scholar
Giasson, B. I. et al. Oxidative damage linked to neurodegeneration by selective α-synuclein nitration in synucleinopathy lesions. Science290, 985–989 (2000). ArticleCAS Google Scholar
Johnston, J. A., Ward, C. L. & Kopito, R. R. Aggresomes: a cellular response to misfolded proteins. J. Cell Biol.143, 1883–98 (1998). ArticleCAS Google Scholar
Wigley, W. C. et al. Dynamic association of proteasomal machinery with the centrosome. J. Cell Biol.145, 481–490 (1999). ArticleCAS Google Scholar
Kopito, R. R. Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol.10, 524–530 (2000). ArticleCAS Google Scholar
Davies, K. J. Degradation of oxidized proteins by the 20S proteasome. Biochimie83, 301–310 (2001). ArticleCAS Google Scholar
Masliah, E. et al. Dopaminergic loss and inclusion body formation in α-synuclein mice: implications for neurodegenerative disorders. Science287, 1265–1269 (2000). ArticleCAS Google Scholar
Feany, M. B. & Bender, W. W. A Drosophila model of Parkinson's disease. Nature404, 394–398 (2000). ArticleCAS Google Scholar
Hattori, N. et al. Autosomal recessive juvenile parkinsonism: a key to understanding nigral degeneration in sporadic Parkinson's disease. Neuropathology20, S85–90 (2000). Article Google Scholar
Cummings, C. J. Mutation of the E6-AP ubiquitin ligase reduces nuclear inclusion frequency while accelerating polyglutamine-induced pathology in SCA1 mice. Neuron24, 879–892 (1999). ArticleCAS Google Scholar
De Silva, H. R., Khan, N. L. & Wood, N. W. The genetics of Parkinson's disease. Curr. Opin. Genet. Dev.10, 292–298 (2000). ArticleCAS Google Scholar
Polymeropoulos, M. H. et al. Mapping of a gene for Parkinson's disease to chromosome 4q21-q23. Science274, 1197–1199 (1996). ArticleCAS Google Scholar
Polymeropoulos, M. H. et al. Mutation in the α-synuclein gene identified in families with Parkinson's disease. Science276, 2045–2047 (1997). ArticleCAS Google Scholar
Kruger, R. et al. Ala30Pro mutation in the gene encoding α-synuclein in Parkinson's disease. Nature Genet.18, 106–108 (1998). ArticleCAS Google Scholar
Vaughan, J. et al. The α-synuclein Ala53Thr mutation is not a common cause of familial Parkinson's disease: a study of 230 European cases. European Consortium on Genetic Susceptibility in Parkinson's Disease. Ann. Neurol.44, 270–273 (1998). ArticleCAS Google Scholar
Solano, S. M., Miller, D. W., Augood, S. J., Young, A. B. & Penney, J. B. Jr Expression of α-synuclein, parkin, and ubiquitin carboxy-terminal hydrolase L1 mRNA in human brain: genes associated with familial Parkinson's disease. Ann. Neurol.47, 201–210 (2000). ArticleCAS Google Scholar
Kanda, S., Bishop, J. F., Eglitis, M. A., Yang, Y. & Mouradian, M. M. Enhanced vulnerability to oxidative stress by α-synuclein mutations and C-terminal truncation. Neuroscience97, 279–284 (2000). ArticleCAS Google Scholar
Lee, M., Hyun, D., Halliwell, B. & Jenner, P. Effect of the overexpression of wild-type or mutant α-synuclein on cell susceptibility to insult. J. Neurochem.76, 998–1009 (2001). ArticleCAS Google Scholar
Zhou, W., Hurlbert, M. S., Schaack, J., Prasad, K. N. & Freed, C. R. Overexpression of human α-synuclein causes dopamine neuron death in rat primary culture and immortalized mesencephalon-derived cells. Brain Res.866, 33–43 (2000). ArticleCAS Google Scholar
Borden, K. L. Structure/function in neuroprotection and apoptosis. Ann. Neurol.44, S65–71 (1998). ArticleCAS Google Scholar
Conway, K. A., Harper, J. D. & Lansbury, P. T. Accelerated in vitro fibril formation by a mutant α-synuclein linked to early-onset Parkinson disease. Nature Med.4, 1318–1320 (1998). ArticleCAS Google Scholar
Weinreb, P. H., Zhen, W., Poon, A. W., Conway, K. A. & Lansbury, P. T. Jr NACP, a protein implicated in Alzheimer's disease and learning, is natively unfolded. Biochemistry35, 13709–13715 (1996). ArticleCAS Google Scholar
Bennett, M. C. et al. Degradation of α-synuclein by proteasome. J. Biol. Chem.274, 33855–33858 (1999). ArticleCAS Google Scholar
Ghee, M., Fournier, A. & Mallet, J. Rat α-synuclein interacts with Tat binding protein 1, a component of the 26S proteasomal complex. J. Neurochem.75, 2221–2224 (2000). ArticleCAS Google Scholar
Tanaka, Y. et al. Inducible expression of mutant α-synuclein decreases proteasome activity and increases sensitivity to mitochondria-dependent apoptosis. Hum. Mol. Genet.10, 919–926 (2001). ArticleCAS Google Scholar
Leroy, E. et al. The ubiquitin pathway in Parkinson's disease. Nature395, 451–452 (1998). ArticleCAS Google Scholar
Wintermeyer, P. et al. Mutation analysis and association studies of the UCHL1 gene in German Parkinson's disease patients. Neuroreport11, 2079–2082 (2000). ArticleCAS Google Scholar
Saigoh, K. et al. Intragenic deletion in the gene encoding ubiquitin carboxy-terminal hydrolase in gad mice. Nature Genet.23, 47–51 (1999). ArticleCAS Google Scholar
Ishikawa, A. & Takahashi, H. Clinical and neuropathological aspects of autosomal recessive juvenile parkinsonism. J. Neurol.245, 4–9 (1998). Article Google Scholar
Kitada, T. et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature392, 605–608 (1998). ArticleCAS Google Scholar
Lucking, C. B. et al. Association between early-onset Parkinson's disease and mutations in the parkin gene. French Parkinson's Disease Genetics Study Group. N. Engl. J. Med.342, 1560–1567 (2000). ArticleCAS Google Scholar
Shimura, H. et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nature Genet.25, 302–305 (2000). ArticleCAS Google Scholar
Imai, Y. et al. An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of parkin. Cell105, 891–902 (2001). ArticleCAS Google Scholar
Zhang, Y. et al. Parkin functions as an E2-dependent ubiquitin-protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc. Natl Acad. Sci. USA97, 13354–13359 (2000). ArticleCAS Google Scholar
Yoritaka, A. et al. Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease. Proc. Natl Acad. Sci. USA93, 2696–2701 (1996). ArticleCAS Google Scholar
Jenner, P. & Olanow, C. W. Understanding cell death in Parkinson's disease. Ann. Neurol.44, S72–84 (1998). Article Google Scholar
Betarbet, R. et al. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nature Neurosci.3, 1301–1306 (2000). ArticleCAS Google Scholar
Nam, S., Smith, D. M. & Dou, Q. P. Ester bond-containing tea polyphenols potently inhibit proteasome activity in vitro and in vivo. J. Biol. Chem.276, 13322–13330 (2001). ArticleCAS Google Scholar
Lee, M., Hyun, D. H., Jenner, P. & Halliwell, B. Effect of proteasome inhibition on cellular oxidative damage, antioxidant defences and nitric oxide production. J. Neurochem.78, 32–41 (2001). ArticleCAS Google Scholar
Tatton, N. A., Maclean-Fraser, A., Tatton, W. G., Perl, D. P. & Olanow, C. W. A fluorescent double-labeling method to detect and confirm apoptotic nuclei in Parkinson's disease. Ann. Neurol.44, S142–148 (1998). ArticleCAS Google Scholar
Keller, J. N., Huang, F. F. & Markesbery, W. R. Decreased levels of proteasome activity and proteasome expression in aging spinal cord. Neuroscience98, 149–156 (2000). ArticleCAS Google Scholar
Gaczynska, M., Osmulski, P. A. & Ward, W. F. Caretaker or undertaker? The role of the proteasome in aging. Mech. Ageing Dev.122, 235–254 (2001). ArticleCAS Google Scholar
Gibb, W. R. & Lees, A. J. The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson's disease. J. Neurol. Neurosurg. Psychiatry51, 745–752 (1988). ArticleCAS Google Scholar
McCutchen-Maloney, S. L. et al. cDNA cloning, expression, and functional characterization of PI31, a proline-rich inhibitor of the proteasome. J. Biol. Chem.275, 18557–18565 (2000). ArticleCAS Google Scholar