Structural mimicry in bacterial virulence (original) (raw)

References

  1. Guan, K. & Dixon, J. E. Protein tyrosine phosphatase activity of an essential virulence determinant in Yersinia. Science 249, 553–556 (1990).
    Article CAS Google Scholar
  2. Hardt, W.-D., Chen, L.-M., Schuebel, K. E., Bustelo, X. R. & Galán, J. E. Salmonella typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 93, 815–826 (1998).
    Article CAS Google Scholar
  3. Hamburger, Z. A., Brown, M. S., Isberg, R. R. & Bjorkman, P. J. Crystal structure of invasin: a bacterial integrin-binding protein. Science 286, 291–295 (1999).
    Article CAS Google Scholar
  4. Fu, Y. & Galán, J. E. A Salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature 401, 293–297 (1999).
    Article CAS Google Scholar
  5. Stebbins, C. E. & Galán, J. E. Modulation of host signaling by a bacterial mimic. Structure of the Salmonella effector SptP bound to Rac1. Mol. Cell 6, 1449–1460 (2000).
    Article CAS Google Scholar
  6. Galyov, E. E., Hakansson, S., Forsberg, A. & Wolf-Watz, H. A secreted protein kinase of Yersinia pseudotuberculosis is an indispensable virulence determinant. Nature 361, 730–732 (1993).
    Article CAS Google Scholar
  7. Norris, F. A., Wilson, M. P., Wallis, T. S., Galyov, E. E. & Majerus, P. W. SopB, a protein required for virulence of Salmonella dublin, is an inositol phosphate phosphatase. Proc. Natl Acad. Sci. USA 95, 14057–14059 (1998).
    Article CAS Google Scholar
  8. Zhou, D., Mooseker, M. & Galán, J. E. Role of the S. Typhimurium actin-binding protein SipA in bacterial internalization. Science 283, 2092–2095 (1999).
    Article CAS Google Scholar
  9. Lerm, M., Schmidt, G. & Aktories, K. Bacterial protein toxins targeting rho GTPases. FEMS Microbiol. Lett. 188, 1–6 (2000).
    Article CAS Google Scholar
  10. Alouf, J. E. Bacterial protein toxins. An overview. Methods Mol. Biol. 145, 1–26 (2000).
    CAS PubMed Google Scholar
  11. Montecucco, C., Papini, E. & Schiavo, G. Bacterial protein toxins and cell vesicle trafficking. Experimentia 52, 1026–1032 (1996).
    Article CAS Google Scholar
  12. Haag, F. & Koch-Nolte, F. Endogenous relatives of ADP-ribosylating bacterial toxins in mice and men: potential regulators of immune cell function. J. Biol. Regul. Homeost. Agents 12, 53–62 (1998).
    CAS PubMed Google Scholar
  13. Galán, J. E. & Collmer, A. Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284, 322–328 (1999).
    Google Scholar
  14. Stuckey, J. A. et al. Crystal structure of Yersinia protein tyrosine phosphatase at 2.5 Å and the complex with tungstate. Nature 370, 571–575 (1994).
    Article CAS Google Scholar
  15. Kaniga, K., Uralil, J., Bliska, J. B. & Galán, J. E. A secreted tyrosine phosphatase with modular effector domains encoded by the bacterial pathogen Salmonella typhimurium. Mol. Microbiol. 21, 633–641 (1996).
    Article CAS Google Scholar
  16. Persson, C., Carballeira, N., Wolf-Watz, H. & Fallman, M. The PTPase YopH inhibits uptake of Yersinia, tyrosine phosphorylation of p130Cas and FAK, and the associated accumulation of these proteins in peripheral focal adhesions. EMBO J. 16, 2307–2318 (1997).
    Article CAS Google Scholar
  17. Black, D. S. & Bliska, J. B. Identification of p130Cas as a substrate of Yersinia YopH (Yop51), a bacterial protein tyrosine phosphatase that translocates into mammalian cells and targets focal adhesions. EMBO J. 16, 2730–2744 (1997).
    Article CAS Google Scholar
  18. Orth, K. et al. Disruption of signaling by the Yersinia effector YopJ, a ubiquitin-like protein protease. Science 290, 1594–1597 (2000).
    Article CAS Google Scholar
  19. Isberg, R. R. & Leong, J. M. Multiple beta 1 chain integrins are receptors for invasin, a protein that promotes bacterial penetration into mammalian cells. Cell 60, 861–871 (1990).
    Article CAS Google Scholar
  20. Goehring, U. M., Schmidt, G., Pederson, K. J., Aktories, K. & Barbieri, J. T. The N-terminal domain of Pseudomonas aeruginosa exoenzyme S is a GTPase-activating protein for Rho GTPases. J. Biol. Chem. 274, 36369–36372 (1999).
    Article CAS Google Scholar
  21. Von Pawel-Rammingen, U. et al. GAP activity of the Yersinia YopE cytotoxin specifically targets the rho pathway: a mechanism for disruption of actin microfilament structure. Mol. Microbiol. 36, 737–748 (2000).
    Article CAS Google Scholar
  22. Wurtele, M. et al. How the Pseudomonas aeruginosa ExoS toxin downregulates Rac. Nature Struct. Biol. 8, 23–26 (2001).
    Article CAS Google Scholar
  23. Galán, J. E. & Zhou, D. Striking a balance: modulation of the actin cytoskeleton by Salmonella. Proc. Natl Acad. Sci. USA 97, 8754–8761 (2000).
    Article Google Scholar
  24. Stender, S. et al. Identification of SopE2 from Salmonella typhimurium, a conserved guanine nucleotide exchange factor for Cdc42 of the host cell. Mol. Microbiol. 36, 1206–1221 (2000).
    Article CAS Google Scholar
  25. Nassar, N., Hoffman, G. R., Mannor, D., Clardy, J. C. & Cerione, R. A. Structures of Cde42 bound to the active and catalytically compromised forms of Cdc42GAP. Nature Struct. Biol. 5, 1047–1052 (1998).
    Article CAS Google Scholar
  26. Rittinger, K., Walker, P. A., Eccleston, J. F., Smerdon, S. J. & Gamblin, S. J. Structure at 1.65 Å of RhoA and its GTPase-activating protein in complex with a transition-state analogue. Nature 389, 758–762 (1997).
    Article CAS Google Scholar
  27. Scheffzek, K. et al. The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277, 333–338 (1997).
    Article CAS Google Scholar
  28. Scheffzek, K., Ahmadian, M. R. & Wittinghofer, A. GTPase-activating proteins: helping hands to complement an active site. Trends Biochem. 23, 7257–7262 (1998).
    Article Google Scholar
  29. Isberg, R. R., Hamburger, Z. & Dersch, P. Signaling and invasin-promoted uptake via integrin receptors. Microbes Infect. 2, 793–801 (2000).
    Article CAS Google Scholar
  30. Tran Van Nhieu, G. & Isberg, R. R. The Yersinia pseudotuberculosis invasin protein and human fibronectin bind to mutually exclusive sites on the alpha 5 beta 1 integrin receptor. J. Biol. Chem. 266, 24367–24375 (1991).
    CAS Google Scholar
  31. Tran Van Nhieu, G. & Isberg, R. R. Bacterial internalization mediated by beta 1 chain integrins is determined by ligand affinity and receptor density. EMBO J. 12, 1887–1895 (1993).
    Article CAS Google Scholar
  32. Leahy, D. J. Aukhil, I. & Erickson, H. P. 2.0 Å crystal structure of a four-domain segment of human fibronectin encompassing the RGD loop and synergy region. Cell 84, 155–164 (1996).
    Article CAS Google Scholar
  33. Reyrat, J. M. et al. Towards deciphering the Helicobacter pylori cytotoxin. Mol. Microbiol. 34, 197–204 (1999).
    Article CAS Google Scholar
  34. Cossart, P. & Lecuit, M. Interactions of Listeria monocytogenes with mammalian cells during entry and actin-based movement: bacterial factors, cellular ligands and signaling. EMBO J. 17, 3797–3806 (1998).
    Article CAS Google Scholar
  35. Braun, L., Ghebrehiwet, B. & Cosart, P. gC1q-R/p32, a C1q-binding protein, is a receptor for the InlB invasion protein of Listeria monocytogenes. EMBO J. 19, 1458–1466 (2000).
    Article CAS Google Scholar
  36. Shen, Y., Naujokas, M., Park, M. & Ireton, K. InlB-dependent internalization of Listeria is mediated by the met receptor tyrosine kinase. Cell 103, 501–510 (2000).
    Article CAS Google Scholar
  37. Kobe, B. & Deisenhofer, J. The leucine-rich repeat: a versatile binding motif. Trends Biochem. Sci. 19, 415–421 (1994).
    Article CAS Google Scholar
  38. Marino, M., Braun, L., Cossart, P. & Ghosh, P. Structure of the InlB leucine-rich repeats, a domain that triggers host cell invasion by the bacterial pathogen Listeria monocytogenes. Mol. Cell 4, 1063–1072 (1999).
    Article CAS Google Scholar
  39. Hardt, W.-D., Urlaub, H. & Galán, J. E. A target of the centisome 63 type III protein secretion system of Salmonella typhimurium is encoded by a cryptic bacteriophage. Proc. Natl Acad. Science USA 95, 2574–2579 (1998).
    Article CAS Google Scholar
  40. Hayward, R. D. & Koronakis, V. Direct nucleation and bundling of actin by the SipC protein of invasive Salmonella. EMBO J. 18, 4926–4934 (1999).
    Article CAS Google Scholar
  41. Tran Van Nhieu, G., Ben-Ze'ev, A. & Sansonetti, P. J. Modulation of bacterial entry into epithelial cells by association between vinculin and the Shigella IpaA invasin. EMBO J. 16, 2717–2729 (1997).
    Article CAS Google Scholar
  42. Chen, Y., Smith, M. R., Thirumalai, K. & Zychlinsky, A. A bacterial invasin induces macrophage apoptosis by binding directly to ICE. EMBO J. 15, 3853–3860 (1996).
    Article CAS Google Scholar
  43. Bourdet-Sicard, R., Egile, C., Sansonetti, P. J. & Tran Van Nhieu, G. Diversion of cytoskeletal processes by Shigella during invasion of epithelial cells. Microbes Infect. 2, 813–819 (2000).
    Article CAS Google Scholar
  44. Goosney, D. L., Gruenheid, S. & Finlay, B. B. Gut feelings: enteropathogenic E. coli (EPEC) interactions with the host. Annu. Rev. Cell Dev. Biol. 16, 173–189 (2000).
    Article CAS Google Scholar

Download references