The development of androgen-independent prostate cancer (original) (raw)
Greenlee, R. T., Taylor, M., Bolden, S. & Wingo, P. A. Cancer statistics: 2000. CA Cancer J. Clin.50, 7–33 (2000). CASPubMed Google Scholar
Huggins, C. Endocrine-induced regression of cancers. Cancer Res.27, 1925–1930 (1967). CASPubMed Google Scholar
Denmeade, S. R., Lin, X. S. & Isaacs, J. T. Role of programmed (apoptotic) cell death during the progression and therapy for prostate cancer. Prostate28, 251–265 (1996). CASPubMed Google Scholar
Griffin, J. E. & Wilson, J. D. in Williams Testbook of Endocrinology 9th edn (eds Wilson, J. D., Foster, D. W., Kronenberg, H. M. & Larsen, P. R.) 819–876 (W. B. Saunders & Co., Philadelphia, 1998). Google Scholar
Quigley, C. A. et al. Androgen receptor defects: historical, clinical, and molecular perspectives. Endocr. Rev.16, 271–321.
Brinkmann, A. O. et al. Mechanisms of androgen receptor activation and function. J. Steroid Biochem. Mol. Biol.69, 307–313 (1999). CASPubMed Google Scholar
Nazareth, L. V. & Weigel, N. L. Activation of the human androgen receptor through a protein kinase A signaling pathway. J. Biol. Chem.271, 19900–19907 (1996). CASPubMed Google Scholar
McKenna, N. J., Lanz, R. B. & O'Malley, B. W. Nuclear receptor coregulators: cellular and molecular biology. Endocr. Rev.20, 321–344 (1999). CASPubMed Google Scholar
Howell, S. B. DNA microarrays for analysis of gene expression. Mol. Urol.3, 295–300 (1999). CASPubMed Google Scholar
Ruijter, E. et al. Molecular genetics and epidemiology of prostate carcinoma. Endocr. Rev.20, 22–45 (1999). An extensive review of the mutations found in prostate cancers. CASPubMed Google Scholar
Lee, W. H. et al. Cytidine methylation of regulatory sequences near the π-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc. Natl Acad. Sci. USA91, 11733–11737 (1994). CASPubMedPubMed Central Google Scholar
Hyytinen, E. R. et al. Genetic changes associated with the acquisition of androgen-independent growth, tumorigenicity and metastatic potential in a prostate cancer model. Br. J. Cancer75, 190–195 (1997). CASPubMedPubMed Central Google Scholar
Pilat, M. J., Kamradt, J. M. & Pienta, K. J. Hormone resistance in prostate cancer. Cancer Metastasis Rev.17, 373–381 (1998). CASPubMed Google Scholar
Marcelli, M. et al. Androgen receptor mutations in prostate cancer. Cancer Res.60, 944–949 (2000). Analysed a large number of prostate cancers confirming the high frequency of AR mutations in AIPC. CASPubMed Google Scholar
Koivisto, P. et al. Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer. Cancer Res.57, 314–319.
Taplin, M. E. et al. Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N. Engl. J. Med.332, 1393–1398 (1995). Raised the possibility of frequent AR mutations in metastatic prostate cancer. CASPubMed Google Scholar
Tilley, W. D., Buchanan, G., Hickey, T. E. & Bentel, J. M. Mutations in the androgen receptor gene are associated with progression of human prostate cancer to androgen independence. Clin. Cancer Res.2, 277–285 (1996). CASPubMed Google Scholar
Taplin, M. E. et al. Selection for androgen receptor mutations in prostate cancers treated with androgen antagonist. Cancer Res.59, 2511–2515 (1999). CASPubMed Google Scholar
Culig, Z. et al. Expression, structure, and function of androgen receptor in advanced prostatic carcinoma. Prostate35, 63–70 (1998). CASPubMed Google Scholar
Craft, N. et al. Evidence for clonal outgrowth of androgen-independent prostate cancer cells from androgen-dependent tumors through a two-step process. Cancer Res.59, 5030–5036 (1999). CASPubMed Google Scholar
Buchanan, G. et al. Collocation of androgen receptor gene mutations in prostate cancer. Clin. Cancer Res.7, 1273–1281 (2001). Description of precocious AR mutations in human and TRAMP models and analysis of the types of mutation that stimulate AR signalling. CASPubMed Google Scholar
Buchanan, G. et al. Mutations at the boundary of the hinge and ligand binding domain of the androgen receptor confer increased transactivation function. Mol. Endocrinol.15, 46–56 (2001). CASPubMed Google Scholar
Cher, M. L. et al. Genetic alterations in untreated metastases and androgen-independent prostate cancer detected by comparative genomic hybridization and allelotyping. Cancer Res.56, 3091–3102 (1996). CASPubMed Google Scholar
Bruchovsky, N. et al. Intermittent androgen suppression for prostate cancer: Canadian Prospective Trial and related observations. Mol. Urol.4, 191–199; discussion 201 (2000). CASPubMed Google Scholar
Visakorpi, T. et al. In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nature Genet.9, 401–406 (1995). This study defined the amplified AR as a mechanism for the hypersensitive pathway. CASPubMed Google Scholar
Palmberg, C. et al. Androgen receptor gene amplification at primary progression predicts response to combined androgen blockade as second line therapy for advanced prostate cancer. J. Urol.164, 1992–1995 (2000). CASPubMed Google Scholar
Gregory, C. W., Johnson, R. T. Jr, Mohler, J. L., French, F. S. & Wilson, E. M. Androgen receptor stabilization in recurrent prostate cancer is associated with hypersensitivity to low androgen. Cancer Res.61, 2892–2898.
Gregory, C. W. et al. A mechanism for androgen receptor-mediated prostate cancer recurrence after androgen deprivation therapy. Cancer Res.61, 4315–4319 (2001). CASPubMed Google Scholar
Labrie, F. et al. Treatment of prostate cancer with gonadotropin-releasing hormone agonists. Endocr. Rev.7, 67–74 (1986). An early review of the endocrinology and hormonal treatment of prostate cancer. CASPubMed Google Scholar
Makridakis, N. et al. A prevalent missense substitution that modulates activity of prostatic steroid 5α-reductase. Cancer Res.57, 1020–1022 (1997). CASPubMed Google Scholar
Labrie, F. et al. Science behind total androgen blockade: from gene to combination therapy. Clin. Invest. Med.16, 475–492 (1993). CASPubMed Google Scholar
Eisenberger, M. A. et al. Bilateral orchiectomy with or without flutamide for metastatic prostate cancer. N. Engl. J. Med.339, 1036–1042 (1998). CASPubMed Google Scholar
Prostate Cancer Trialists' Collaborative Group. Maximum androgen blockade in advanced prostate cancer: an overview of the randomised trials. Lancet355, 1491–1498 (2000).
Collette, L., Studer, U. E., Schroder, F. H., Denis, L. J. & Sylvester, R. J. Why phase III trials of maximal androgen blockade versus castration in M1 prostate cancer rarely show statistically significant differences. Prostate48, 29–39 (2001). CASPubMed Google Scholar
Liotta, L. & Petricoin, E. Molecular profiling of human cancer. Nature Rev. Genet.1, 48–56 (2000). CASPubMed Google Scholar
Veldscholte, J. et al. The androgen receptor in LNCaP cells contains a mutation in the ligand binding domain which affects steroid binding characteristics and response to antiandrogens. J. Steroid Biochem. Mol. Biol.41, 665–669 (1992). Early definition of the LNCaP mutation that laid the foundations for understanding the promiscuous AR mechanism. CASPubMed Google Scholar
Gaddipati, J. P. et al. Frequent detection of codon 877 mutation in the androgen receptor gene in advanced prostate cancers. Cancer Res.54, 2861–2864 (1994). CASPubMed Google Scholar
Culig, Z. et al. Mutant androgen receptor detected in an advanced-stage prostatic carcinoma is activated by adrenal androgens and progesterone. Mol. Endocrinol.7, 1541–1550 (1993). CASPubMed Google Scholar
Small, E. J. & Srinivas, S. The antiandrogen withdrawal syndrome. Experience in a large cohort of unselected patients with advanced prostate cancer. Cancer76, 1428–1434 (1995). CASPubMed Google Scholar
Matias, P. M. et al. Structural evidence for ligand specificity in the binding domain of the human androgen receptor. J. Biol. Chem.275, 26164–26171 (2000). CASPubMed Google Scholar
Sack, J. S. et al. Crystallographic structures of the ligand-binding domains of the androgen receptor and its T877A mutant complexed with the natural agonist dihydrotestosterone. Proc. Natl Acad. Sci. USA98, 4904–4909 (2001). CASPubMedPubMed Central Google Scholar
McDonald, S., Brive, L., Agus, D. B., Scher, H. I. & Ely, K. R. Ligand responsiveness in human prostate cancer: structural analysis of mutant androgen receptors from LNCaP and CWR22 tumors. Cancer Res.60, 2317–2322 (2000). CASPubMed Google Scholar
Navone, N. M. et al. Establishment of two human prostate cancer cell lines derived from a single bone metastasis. Clin. Cancer Res.3, 2493–2500 (1997). CASPubMed Google Scholar
Zhao, X. Y. et al. Glucocorticoids can promote androgen-independent growth of prostate cancer cells through a mutated androgen receptor. Nature Med.6, 703–706 (2000). Defined the double AR mutation creating a cortisol-responsive prostate cancer cell, expanding the promiscuous AR hypothesis to include circulating levels of corticosteroids. CASPubMed Google Scholar
Zhao, X. Y. et al. Two mutations identified in the androgen receptor of the new human prostate cancer cell line MDA PCa 2a. J. Urol.162, 2192–2199 (1999). CASPubMed Google Scholar
Suzuki, H. et al. Androgen receptor gene mutations in human prostate cancer. J. Steroid Biochem. Mol. Biol.46, 759–765 (1993). CASPubMed Google Scholar
Han, G. et al. Hormone status selects for spontaneous somatic androgen receptor variants that demonstrate specific ligand and cofactor dependent activities in autochthonous prostate cancer. J. Biol. Chem.276, 11204–11213 (2001). CASPubMed Google Scholar
Thalmann, G. N. et al. LNCaP progression model of human prostate cancer: androgen-independence and osseous metastasis. Prostate44, 91–103 (2000). CASPubMed Google Scholar
Culig, Z. et al. Switch from antagonist to agonist of the androgen receptor bicalutamide is associated with prostate tumour progression in a new model system. Br. J. Cancer81, 242–251 (1999). CASPubMedPubMed Central Google Scholar
Adachi, M. et al. Androgen-insensitivity syndrome as a possible coactivator disease. N. Engl. J. Med.343, 856–862 (2000). CASPubMed Google Scholar
Anzick, S. L. et al. AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science277, 965–968 (1997). CASPubMed Google Scholar
Yeh, S. & Chang, C. Cloning and characterization of a specific coactivator, ARA70, for the androgen receptor in human prostate cells. Proc. Natl Acad. Sci. USA93, 5517–5521 (1996). CASPubMedPubMed Central Google Scholar
Alen, P. et al. Interaction of the putative androgen receptor-specific coactivator ARA70/ELE1α with multiple steroid receptors and identification of an internally deleted ELE1β isoform. Mol. Endocrinol.13, 117–128 (1999). CASPubMed Google Scholar
Gao, T., Brantley, K., Bolu, E. & McPhaul, M. J. RFG (ARA70, ELE1) interacts with the human androgen receptor in a ligand-dependent fashion, but functions only weakly as a coactivator in cotransfection assays. Mol. Endocrinol.13, 1645–1656 (1999). CASPubMed Google Scholar
Miyamoto, H., Yeh, S., Wilding, G. & Chang, C. Promotion of agonist activity of antiandrogens by the androgen receptor coactivator, ARA70, in human prostate cancer DU145 cells. Proc. Natl Acad. Sci. USA95, 7379–7384 (1998). CASPubMedPubMed Central Google Scholar
Lavinsky, R. M. et al. Diverse signaling pathways modulate nuclear receptor recruitment of N-CoR and SMRT complexes. Proc. Natl Acad. Sci. USA95, 2920–2925 (1998). CASPubMedPubMed Central Google Scholar
McGuire, W. L., Chamness, G. C. & Fuqua, S. A. Estrogen receptor variants in clinical breast cancer. Mol. Endocrinol.5, 1571–1577 (1991). CASPubMed Google Scholar
Culig, Z. et al. Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor. Cancer Res.54, 5474–5478 (1994). Early description of growth-factor activation of AR in the absence of ligand, developing the basis for the outlaw AR pathway. CASPubMed Google Scholar
Slamon, D. J. et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science244, 707–712 (1989). CASPubMed Google Scholar
Borg, A. et al. ERBB2 amplification is associated with tamoxifen resistance in steroid-receptor positive breast cancer. Cancer Lett.81, 137–144 (1994). CASPubMed Google Scholar
Pietras, R. J. et al. HER-2 tyrosine kinase pathway targets estrogen receptor and promotes hormone-independent growth in human breast cancer cells. Oncogene10, 2435–2446 (1995). CASPubMed Google Scholar
Craft, N., Shostak, Y., Carey, M. & Sawyers, C. L. A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nature Med.5, 280–285 (1999). A leading example of the outlaw pathway with implications for the treatment of some cases of prostate cancer with Herceptin. CASPubMed Google Scholar
Yeh, S. et al. From HER2/Neu signal cascade to androgen receptor and its coactivators: a novel pathway by induction of androgen target genes through MAP kinase in prostate cancer cells. Proc. Natl Acad. Sci. USA96, 5458–5463 (1999). CASPubMedPubMed Central Google Scholar
Slamon, D. J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med.344, 783–792 (2001). CASPubMed Google Scholar
Vogel, C. et al. First-line, single-agent Herceptin (trastuzumab) in metastatic breast cancer: a preliminary report. Eur. J. Cancer37, S25–S29 (2001). CASPubMed Google Scholar
Agus, D. B. et al. Response of prostate cancer to anti-Her-2/neu antibody in androgen-dependent and -independent human xenograft models. Cancer Res.59, 4761–4764 (1999). CASPubMed Google Scholar
Li, J. et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science275, 1943–1947 (1997). CASPubMed Google Scholar
Ittmann, M. M. Chromosome 10 alterations in prostate adenocarcinoma. Oncol. Rep.5, 1329–1335 (1998). CASPubMed Google Scholar
Datta, S. R., Brunet, A. & Greenberg, M. E. Cellular survival: a play in three AKTs. Genes Dev.13, 2905–2927 (1999). CASPubMed Google Scholar
Stambolic, V. et al. Negative regulation of PKB/AKT-dependent cell survival by the tumor suppressor PTEN. Cell95, 29–39 (1998). CASPubMed Google Scholar
Wu, X., Senechal, K., Neshat, M. S., Whang, Y. E. & Sawyers, C. L. The PTEN/MMAC1 tumor suppressor phosphatase functions as a negative regulator of the phosphoinositide 3-kinase/AKT pathway. Proc. Natl Acad. Sci. USA95,15587–15591 (1998). CASPubMedPubMed Central Google Scholar
Maehama, T. & Dixon, J. E. PTEN: a tumour suppressor that functions as a phospholipid phosphatase. Trends Cell Biol.9, 125–128 (1999). CASPubMed Google Scholar
Zhou, H., Li, X. M., Meinkoth, J. & Pittman, R. N. AKT regulates cell survival and apoptosis at a postmitochondrial level. J. Cell Biol.151, 483–494 (2000). CASPubMedPubMed Central Google Scholar
Medema, R. H., Kops, G. J., Bos, J. L. & Burgering, B. M. AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature404, 782–787 (2000). CASPubMed Google Scholar
Graff, J. R. et al. Increased AKT activity contributes to prostate cancer progression by dramatically accelerating prostate tumor growth and diminishing p27Kip1 expression. J. Biol. Chem.275, 24500–24505 (2000). CASPubMed Google Scholar
Wen, Y. et al. HER-2/neu promotes androgen-independent survival and growth of prostate cancer cells through the AKT pathway. Cancer Res.60, 6841–6845 (2000). CASPubMed Google Scholar
Zhou, B. P. et al. HER-2/neu blocks tumor necrosis factor-induced apoptosis via the AKT/NF- κB pathway. J. Biol. Chem.275, 8027–8031 (2000). CASPubMed Google Scholar
Signoretti, S. et al. HER-2-neu expression and progression toward androgen independence in human prostate cancer. J. Natl Cancer Inst.92, 1918–1925 (2000). CASPubMed Google Scholar
Campbell, R. A. et al. Phosphatidylinositol 3-kinase/AKT-mediated activation of estrogen receptor α: a new model for anti-estrogen resistance. J. Biol. Chem.276, 9817–9824 (2001). CASPubMed Google Scholar
McDonnell, T. J. et al. Expression of the protooncogene BCL-2 in the prostate and its association with emergence of androgen-independent prostate cancer. Cancer Res.52, 6940–6944 (1992). RaisedBCL2overexpression as a potential example of the bypass pathway. CASPubMed Google Scholar
Colombel, M. et al. Detection of the apoptosis-suppressing oncoprotein Bcl2 in hormone-refractory human prostate cancers. Am. J. Pathol.143, 390–400 (1993). CASPubMedPubMed Central Google Scholar
Liu, A. Y., Corey, E., Bladou, F., Lange, P. H. & Vessella, R. L. Prostatic cell lineage markers: emergence of Bcl2+ cells of human prostate cancer xenograft LuCaP 23 following castration. Int. J. Cancer65, 85–89 (1996). CASPubMed Google Scholar
Gleave, M. et al. Progression to androgen independence is delayed by adjuvant treatment with antisense BCL-2 oligodeoxynucleotides after castration in the LNCaP prostate tumor model. Clin. Cancer Res.5, 2891–2898 (1999). CASPubMed Google Scholar
Furuya, Y., Krajewski, S., Epstein, J. I., Reed, J. C. & Isaacs, J. T. Expression of BCL-2 and the progression of human and rodent prostatic cancers. Clin. Cancer Res.2, 389–398.
Isaacs, J. T. The biology of hormone refractory prostate cancer. Why does it develop? Urol. Clin. North Am.26, 263–273 (1999). Expounded the lurker cell hypothesis. CASPubMed Google Scholar
Bui, M. & Reiter, R. E. Stem cell genes in androgen-independent prostate cancer. Cancer Metastasis Rev.17, 391–399 (1998). CASPubMed Google Scholar
Estrov, Z. et al. Persistence of self-renewing leukemia cell progenitors during remission in children with B-precursor acute lymphoblastic leukemia. Leukemia8, 46–52 (1994). CASPubMed Google Scholar
Davi, F., Gocke, C., Smith, S. & Sklar, J. Lymphocytic progenitor cell origin and clonal evolution of human B-lineage acute lymphoblastic leukemia. Blood88, 609–621 (1996). CASPubMed Google Scholar
Morris, M. J. & Scher, H. I. Novel strategies and therapeutics for the treatment of prostate carcinoma. Cancer89, 1329–1348 (2000). CASPubMed Google Scholar
Mendelsohn, L. G. Prostate cancer and the androgen receptor: strategies for the development of novel therapeutics. Prog. Drug Res.55, 213–233 (2000). CASPubMed Google Scholar
Gleave, M. E., Miayake, H., Goldie, J. Nelson, C. & Tolcher, A. Targeting BCL-2 gene to delay androgen-independent progression and enhance chemosensitivity in prostate cancer using antisense BCL-2 oligodeoxynucleotides. Urology54, 36–46 (1999). CASPubMed Google Scholar
Kurita. T. et al. Paracrine regulation of apoptosis by steroid hormones in the male and female reproductive system. Cell Death Differ.8, 192–200 (2001). CASPubMed Google Scholar
Chung, L. W. The role of stromal–epithelial interaction in normal and malignant growth. Cancer Surv.23, 33–42 (1995). CASPubMed Google Scholar
Osborne, C. K. Tamoxifen in the treatment of breast cancer. N. Engl. J. Med.339, 1609–1618 (1998). CASPubMed Google Scholar