Addiction and the brain: The neurobiology of compulsion and its persistence (original) (raw)
Hyman, S. E. A man with alcoholism and HIV infection. J. Am. Med. Assoc.274, 837–843 (1995). ArticleCAS Google Scholar
Hyman, S. E. Clinical crossroads. A 28 year old man addicted to cocaine. J. Am. Med. Assoc. (in the press).
O'Brien, C. P., Childress, A. R., Ehrman, R. & Robbins, S. J. Conditioning factors in drug abuse: can they explain compulsion? J. Psychopharmacol.12, 15–22 (1998).A clear summary of the clinical correlates of classical conditioning in addiction. ArticleCASPubMed Google Scholar
Wise, R. A. & Bozarth, M. A. A psychomotor stimulant theory of addiction. Psychol. Rev.94, 469–492 (1987).A seminal and classic conceptualization of addiction. ArticleCASPubMed Google Scholar
McLellan, A. T., Lewis, D. C., O'Brien, C. P. & Kleber, H. D. Drug dependence, a chronic medical illness: implications for treatment, insurance, and outcome evaluation. J. Am. Med. Assoc.284, 1689–1695 (2000). ArticleCAS Google Scholar
Hser, Y. I., Hoffman, V., Grella, C. E. & Anglin, M. D. A 33-year follow-up of narcotics addicts. Arch. Gen. Psychiatry58, 503–508 (2001). ArticleCASPubMed Google Scholar
Nestler, E. J. Molecular basis of long-term plasticity underlying addiction. Nature Rev. Neurosci.2, 119–128 (2001).The most up-to-date review of drug-induced molecular changes in the brain. ArticleCAS Google Scholar
Berke, J. D. & Hyman, S. E. Addiction, dopamine, and the molecular mechanisms of memory. Neuron25, 515–532 (2000).Focuses on mechanisms that can explain the compulsive use of psychostimulants (cocaine and amphetamine) and late relapse. The proposed central role of associative learning mechanisms forms a basis for the current review. ArticleCASPubMed Google Scholar
White, N. M. Reward or reinforcement: what's the difference? Neurosci. Biobehav. Rev.13, 181–186 (1989). ArticleCASPubMed Google Scholar
Kendler, K. S., Karkowski, L. M., Neale, M. C. & Prescott, C. A. Illicit psychoactive substance use, heavy use, abuse, and dependence in a US population-based sample of male twins. Arch. Gen. Psychiatry57, 261–269 (2000). ArticleCASPubMed Google Scholar
Tsuang, M. T. et al. Genetic influences on DSM-III-R drug abuse and dependence: a study of 3,372 twin pairs. Am. J. Med. Genet.67, 473–477 (1996). ArticleCASPubMed Google Scholar
Robinson, T. E. & Berridge, K. C. The psychology and neurobiology of addiction: an incentive-sensitization view. Addiction95, S91–117 (2000). PubMed Google Scholar
Di Chiara, G. A motivational learning hypothesis of the role of mesolimbic dopamine in compulsive drug use. J. Psychopharmacol.12, 54–67 (1998). ArticleCASPubMed Google Scholar
Kalivas, P. W. & Stewart, J. Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Res. Brain Res. Rev.16, 223–244 (1991). ArticleCASPubMed Google Scholar
Anagnostaras, S. G. & Robinson, T. E. Sensitization to the psychomotor stimulant effects of amphetamine: modulation by associative learning. Behav. Neurosci.110, 1397–1414 (1996). ArticleCASPubMed Google Scholar
Badiani, A., Anagnostaras, S. G. & Robinson, T. E. The development of sensitization to the psychomotor stimulant effects of amphetamine is enhanced in a novel environment. Psychopharmacology (Berl.)117, 443–452 (1995). ArticleCAS Google Scholar
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (American Psychiatric Press, Washington DC, 1994).
Markou, A. & Koob, G. F. Postcocaine anhedonia. An animal model of cocaine withdrawal. Neuropsychopharmacology4, 17–26 (1991). CASPubMed Google Scholar
Weiss, F., Markou, A., Lorang, M. T. & Koob, G. F. Basal extracellular dopamine levels in the nucleus accumbens are decreased during cocaine withdrawal after unlimited-access self-administration. Brain Res.593, 314–318 (1992). ArticleCASPubMed Google Scholar
Williams, J. T., Christie, M. J. & Manzoni, O. Cellular and synaptic adaptations mediating opioid dependence. Physiol. Rev.81, 299–343 (2001). ArticleCASPubMed Google Scholar
Robinson, T. E. & Berridge, K. C. The neural basis of drug craving: an incentive–sensitization theory of addiction. Brain Res. Brain Res. Rev.18, 247–291 (1993).Sets out a model of addiction in which drugs increase the sensitivity of circuits involved in 'wanting' rather than 'liking' drugs. ArticleCASPubMed Google Scholar
O'Brien, C. P., Childress, A. R., McLellan, A. T. & Ehrman, R. Classical conditioning in drug-dependent humans. Ann. NY Acad. Sci.654, 400–415 (1992). ArticleCASPubMed Google Scholar
Wikler, A. & Pescor, F. T. Classical conditioning of a morphine abstinence phenomenon, reinforcement of opioid-drinking behavior and “relapse” in morphine-addicted rats. Psychopharmacologia10, 255–284 (1967). ArticleCASPubMed Google Scholar
Kelley, A. E., Smith-Roe, S. L. & Holahan, M. R. Response-reinforcement learning is dependent on _N_-methyl-d-aspartate receptor activation in the nucleus accumbens core. Proc. Natl Acad. Sci. USA94, 12174–12179 (1997). ArticleCASPubMedPubMed Central Google Scholar
Ciccocioppo, R., Sanna, P. P. & Weiss, F. Cocaine-predictive stimulus induces drug-seeking behavior and neural activation in limbic brain regions after multiple months of abstinence: reversal by D1 antagonists. Proc. Natl Acad. Sci. USA98, 1976–1981 (2001). ArticleCASPubMedPubMed Central Google Scholar
Stewart, J., De Wit, H. & Eikelboom, R. Role of unconditioned and conditioned drug effects in the self-administration of opiates and stimulants. Psychol. Rev.91, 251–268 (1984). ArticleCASPubMed Google Scholar
Stewart, J. Neurobiology of conditioning to drugs of abuse. Ann. NY Acad. Sci.654, 335–346 (1992). ArticleCASPubMed Google Scholar
Robinson, T. E., Becker, J. B. & Presty, S. K. Long-term facilitation of amphetamine-induced rotational behavior and striatal dopamine release produced by a single exposure to amphetamine: sex differences. Brain Res.253, 231–241 (1982). ArticleCASPubMed Google Scholar
Robinson, T. E. & Becker, J. B. Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res.396, 157–198 (1986). ArticleCASPubMed Google Scholar
Piazza, P. V. & Le Moal, M. L. Pathophysiological basis of vulnerability to drug abuse: role of an interaction between stress, glucocorticoids, and dopaminergic neurons. Annu. Rev. Pharmacol. Toxicol.36, 359–378 (1996).An exposition of the role of stress and stress hormones in drug abuse; complementary to the content of this review. ArticleCASPubMed Google Scholar
Ehrman, R. N., Robbins, S. J., Childress, A. R. & O'Brien, C. P. Conditioned responses to cocaine-related stimuli in cocaine abuse patients. Psychopharmacology (Berl.)107, 523–529 (1992). ArticleCAS Google Scholar
Kilts, C. D. et al. Neural activity related to drug craving in cocaine addiction. Arch. Gen. Psychiatry58, 334–341 (2001). ArticleCASPubMed Google Scholar
Maas, L. C. et al. Functional magnetic resonance imaging of human brain activation during cue-induced cocaine craving. Am. J. Psychiatry155, 124–126 (1998). ArticleCASPubMed Google Scholar
Everitt, B. J., Morris, K. A., O'Brien, A. & Robbins, T. W. The basolateral amygdala–ventral striatal system and conditioned place preference: further evidence of limbic–striatal interactions underlying reward-related processes. Neuroscience42, 1–18 (1991). ArticleCASPubMed Google Scholar
Tiffany, S. T. A cognitive model of drug urges and drug-use behavior: role of automatic and nonautomatic processes. Psychol. Rev.97, 147–168 (1990). ArticleCASPubMed Google Scholar
Di Chiara, G. & Imperato, A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc. Natl Acad. Sci. USA85, 5274–5278 (1988). ArticleCASPubMedPubMed Central Google Scholar
Wise, R. A. Addictive drugs and brain stimulation reward. Annu. Rev. Neurosci.19, 319–340 (1996). ArticleCASPubMed Google Scholar
Robbins, T. W. & Everitt, B. J. Neurobehavioural mechanisms of reward and motivation. Curr. Opin. Neurobiol.6, 228–236 (1996). ArticleCASPubMed Google Scholar
Koob, G. F. & Bloom, F. E. Cellular and molecular mechanisms of drug dependence. Science242, 715–723 (1988). ArticleCASPubMed Google Scholar
Johnson, S. W. & North, R. A. Opioids excite dopamine neurons by hyperpolarization of local interneurons. J. Neurosci.12, 483–488 (1992). ArticleCASPubMedPubMed Central Google Scholar
White, N. M. Addictive drugs as reinforcers: multiple partial actions on memory systems. Addiction91, 921–949 (1996). ArticleCASPubMed Google Scholar
Breiter, H. C. et al. Acute effects of cocaine on human brain activity and emotion. Neuron19, 591–611 (1997).The first study convincingly to show activation of brain reward circuitry in humans by cocaine. ArticleCASPubMed Google Scholar
Schultz, W., Apicella, P. & Ljungberg, T. Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. J. Neurosci.13, 900–913 (1993). ArticleCASPubMedPubMed Central Google Scholar
Waelti, P., Dickinson, A. & Schultz, W. Dopamine responses comply with basic assumptions of formal learning theory. Nature412, 43–48 (2001).The most recent of a series of papers by Schultz and colleagues, arguing that dopamine serves as a learning signal. ArticleCASPubMed Google Scholar
Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science275, 1593–1599 (1997). ArticleCASPubMed Google Scholar
Kalivas, P. W. Interactions between dopamine and excitatory amino acids in behavioral sensitization to psychostimulants. Drug Alcohol Depend.37, 95–100 (1995). ArticleCASPubMed Google Scholar
Hu, X. T. & White, F. J. Dopamine enhances glutamate-induced excitation of rat striatal neurons by cooperative activation of D1 and D2 class receptors. Neurosci. Lett.224, 61–65 (1997). ArticleCASPubMed Google Scholar
Wolf, M. E. The role of excitatory amino acids in behavioral sensitization to psychomotor stimulants. Prog. Neurobiol.54, 679–720 (1998). ArticleCASPubMed Google Scholar
Martin, S. J., Grimwood, P. D. & Morris, R. G. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci.23, 649–711 (2000). ArticleCASPubMed Google Scholar
Bear, M. F. Progress in understanding NMDA-receptor-dependent synaptic plasticity in the visual cortex. J. Physiol. (Paris)90, 223–227 (1996). ArticleCAS Google Scholar
Clark, D. & Overton, P. G. Alterations in excitatory amino acid-mediated regulation of midbrain dopaminergic neurons induced by chronic psychostimulant administration and stress: relevance to behavioral sensitization and drug addiction. Addict. Biol.3, 109–135 (1998). ArticleCASPubMed Google Scholar
Malenka, R. C. & Nicoll, R. A. Long-term potentiation — a decade of progress? Science285, 1870–1874 (1999).An up-to-date review of current thinking about LTP in the hippocampus. ArticleCASPubMed Google Scholar
Pennartz, C. M., Ameerun, R. F., Groenewegen, H. J. & Lopes da Silva, F. H. Synaptic plasticity in an in vitro slice preparation of the rat nucleus accumbens. Eur. J. Neurosci.5, 107–117 (1993). ArticleCASPubMed Google Scholar
Kombian, S. B. & Malenka, R. C. Simultaneous LTP of non-NMDA- and LTD of NMDA-receptor-mediated responses in the nucleus accumbens. Nature368, 242–246 (1994). ArticleCASPubMed Google Scholar
Thomas, M. J., Malenka, R. C. & Bonci, A. Modulation of long-term depression by dopamine in the mesolimbic system. J. Neurosci.20, 5581–5586 (2000). ArticleCASPubMedPubMed Central Google Scholar
Li, Y. & Kauer, J. A. Amphetamine interferes with long-term potentiation in the nucleus accumbens. Soc. Neurosci. Abstr.26, 1398 (2000). Google Scholar
Nicola, S. M., Surmeier, J. & Malenka, R. C. Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu. Rev. Neurosci.23, 185–215 (2000).Reviews the actions of dopamine on neuronal excitability and synaptic transmission in the striatum. ArticleCASPubMed Google Scholar
Calabresi, P., Centonze, D. & Bernardi, G. Electrophysiology of dopamine in normal and denervated striatal neurons. Trends Neurosci.23, S57–63 (2000). ArticleCASPubMed Google Scholar
Calabresi, P., Pisani, A., Mercuri, N. B. & Bernardi, G. The corticostriatal projection: from synaptic plasticity to dysfunctions of the basal ganglia. Trends Neurosci.19, 19–24 (1996). ArticleCASPubMed Google Scholar
Choi, S. & Lovinger, D. M. Decreased probability of neurotransmitter release underlies striatal long-term depression and postnatal development of corticostriatal synapses. Proc. Natl Acad. Sci. USA94, 2665–2670 (1997). ArticleCASPubMedPubMed Central Google Scholar
Bonci, A. & Malenka, R. C. Properties and plasticity of excitatory synapses on dopaminergic and GABAergic cells in the ventral tegmental area. J. Neurosci.19, 3723–3730 (1999). ArticleCASPubMedPubMed Central Google Scholar
Jones, S., Kornblum, J. L. & Kauer, J. A. Amphetamine blocks long-term synaptic depression in the ventral tegmental area. J. Neurosci.20, 5575–5580 (2000).These two papers describe the basic properties of LTP and LTD in the VTA. ArticleCASPubMedPubMed Central Google Scholar
Kornblum, J. L. & Kauer, J. A. Long-term depression (LTD) in the ventral tegmental area (VTA) requires cyclic AMP dependent protein kinase (PKA). Soc. Neurosci. Abstr. (in the press).
Ungless, M. A., Whisler, J. L., Malenka, R. C. & Bonci, A. Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature411, 583–587 (2001).This paper demonstrates thatin vivococaine administration causes LTP at excitatory synapses in the VTA. ArticleCASPubMed Google Scholar
Mansvelder, H. D. & McGehee, D. S. Long-term potentiation of excitatory inputs to brain reward areas by nicotine. Neuron27, 349–357 (2000). ArticleCASPubMed Google Scholar
Vorel, S. R., Liu, X., Hayes, R. J., Spector, J. A. & Gardner, E. L. Relapse to cocaine-seeking after hippocampal theta burst stimulation. Science292, 1175–1178 (2001). ArticleCASPubMed Google Scholar
Legault, M., Rompre, P. P. & Wise, R. A. Chemical stimulation of the ventral hippocampus elevates nucleus accumbens dopamine by activating dopaminergic neurons of the ventral tegmental area. J. Neurosci.20, 1635–1642 (2000). ArticleCASPubMedPubMed Central Google Scholar
Thomas, M. J. & Malenka, R. C. Behavioral sensitization to cocaine is associated with changes in nucleus accumbens synaptic transmission. Soc. Neurosci. Abstr.26, 791 (2000).
Bailey, C. H. & Kandel, E. R. Structural changes accompanying memory storage. Annu. Rev. Physiol.55, 397–426 (1993). ArticleCASPubMed Google Scholar
Engert, F. & Bonhoeffer, T. Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature399, 66–70 (1999). ArticleCASPubMed Google Scholar
Geinisman, Y., Berry, R. W., Disterhoft, J. F., Power, J. M. & Van der Zee, E. A. Associative learning elicits the formation of multiple-synapse boutons. J. Neurosci.21, 5568–5573 (2001). ArticleCASPubMedPubMed Central Google Scholar
Ingham, C. A., Hood, S. H. & Arbuthnott, G. W. Spine density on neostriatal neurones changes with 6-hydroxydopamine lesions and with age. Brain Res.503, 334–338 (1989). ArticleCASPubMed Google Scholar
Ingham, C. A., Hood, S. H., Van Maldegem, B., Weenink, A. & Arbuthnott, G. W. Morphological changes in the rat neostriatum after unilateral 6-hydroxydopamine injections into the nigrostriatal pathway. Exp. Brain Res.93, 17–27 (1993). ArticleCASPubMed Google Scholar
Meredith, G. E., Ypma, P. & Zahm, D. S. Effects of dopamine depletion on the morphology of medium spiny neurons in the shell and core of the rat nucleus accumbens. J. Neurosci.15, 3808–3820 (1995). ArticleCASPubMedPubMed Central Google Scholar
Ingham, C. A., Hood, S. H., Taggart, P. & Arbuthnott, G. W. Plasticity of synapses in the rat neostriatum after unilateral lesion of the nigrostriatal dopaminergic pathway. J. Neurosci.18, 4732–4743 (1998). ArticleCASPubMedPubMed Central Google Scholar
Robinson, T. E. & Kolb, B. Persistent structural modifications in nucleus accumbens and prefrontal cortex neurons produced by previous experience with amphetamine. J. Neurosci.17, 8491–8497 (1997). ArticleCASPubMedPubMed Central Google Scholar
Robinson, T. E. & Kolb, B. Alterations in the morphology of dendrites and dendritic spines in the nucleus accumbens and prefrontal cortex following repeated treatment with amphetamine or cocaine. Eur. J. Neurosci.11, 1598–1604 (1999).These two papers show that the chronicin vivoadministration of psychostimulants changes the morphology of dendritic spines in the nucleus accumbens and prefrontal cortex. ArticleCASPubMed Google Scholar
Hope, B. T. et al. Induction of a long-lasting AP-1 complex composed of altered Fos-like proteins in brain by chronic cocaine and other chronic treatments. Neuron13, 1235–1244 (1994). ArticleCASPubMed Google Scholar
Berke, J. D., Paletzki, R. F., Aronson, G. J., Hyman, S. E. & Gerfen, C. R. A complex program of striatal gene expression induced by dopaminergic stimulation. J. Neurosci.18, 5301–5310 (1998). ArticleCASPubMedPubMed Central Google Scholar
Kuhar, M. J., Joyce, A. & Dominguez, G. Genes in drug abuse. Drug Alcohol Depend.62, 157–162 (2001). ArticleCASPubMed Google Scholar
Kelz, M. B. et al. Expression of the transcription factor ΔFosB in the brain controls sensitivity to cocaine. Nature401, 272–276 (1999). ArticleCASPubMed Google Scholar
Bibb, J. A. et al. Effects of chronic exposure to cocaine are regulated by the neuronal protein Cdk5. Nature410, 376–380 (2001). ArticleCASPubMed Google Scholar
Shaywitz, A. J. & Greenberg, M. E. CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu. Rev. Biochem.68, 821–861 (1999). ArticleCASPubMed Google Scholar
Bourtchuladze, R. et al. Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell79, 59–68 (1994). ArticleCASPubMed Google Scholar
Yin, J. C. et al. Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell79, 49–58 (1994). ArticleCASPubMed Google Scholar
Nguyen, P. V., Abel, T. & Kandel, E. R. Requirement of a critical period of transcription for induction of a late phase of LTP. Science265, 1104–1107 (1994). ArticleCASPubMed Google Scholar
Frey, U., Frey, S., Schollmeier, F. & Krug, M. Influence of actinomycin D, an RNA synthesis inhibitor, on long-term potentiation in rat hippocampal neurons in vivo and in vitro. J. Physiol. (Lond.)490, 703–711 (1996). ArticleCAS Google Scholar
Nguyen, P. V. & Kandel, E. R. A macromolecular synthesis-dependent late phase of long-term potentiation requiring cAMP in the medial perforant pathway of rat hippocampal slices. J. Neurosci.16, 3189–3198 (1996). ArticleCASPubMedPubMed Central Google Scholar
Silva, A. J., Kogan, J. H., Frankland, P. W. & Kida, S. CREB and memory. Annu. Rev. Neurosci.21, 127–148 (1998). ArticleCASPubMed Google Scholar
Das, S., Grunert, M., Williams, L. & Vincent, S. R. NMDA and D1 receptors regulate the phosphorylation of CREB and the induction of c-fos in striatal neurons in primary culture. Synapse25, 227–233 (1997). ArticleCASPubMed Google Scholar
Konradi, C., Leveque, J. C. & Hyman, S. E. Amphetamine and dopamine-induced immediate early gene expression in striatal neurons depends on postsynaptic NMDA receptors and calcium. J. Neurosci.16, 4231–4239 (1996). ArticleCASPubMedPubMed Central Google Scholar
Cole, R. L., Konradi, C., Douglass, J. & Hyman, S. E. Neuronal adaptation to amphetamine and dopamine: molecular mechanisms of prodynorphin gene regulation in rat striatum. Neuron14, 813–823 (1995). ArticleCASPubMedPubMed Central Google Scholar
Hurd, Y. L. & Herkenham, M. Molecular alterations in the neostriatum of human cocaine addicts. Synapse13, 357–369 (1993). ArticleCASPubMed Google Scholar
Spanagel, R., Herz, A. & Shippenberg, T. S. Opposing tonically active endogenous opioid systems modulate the mesolimbic dopaminergic pathway. Proc. Natl Acad. Sci. USA89, 2046–2050 (1992). ArticleCASPubMedPubMed Central Google Scholar
Steiner, H. & Gerfen, C. R. Dynorphin regulates D1 dopamine receptor-mediated responses in the striatum: relative contributions of pre- and postsynaptic mechanisms in dorsal and ventral striatum demonstrated by altered immediate-early gene induction. J. Comp Neurol.376, 530–541 (1996). ArticleCASPubMed Google Scholar
Shippenberg, T. S., Bals-Kubik, R. & Herz, A. Examination of the neurochemical substrates mediating the motivational effects of opioids: role of the mesolimbic dopamine system and D-1 vs. D-2 dopamine receptors. J. Pharmacol. Exp. Ther.265, 53–59 (1993). CASPubMed Google Scholar
Shippenberg, T. S. & Rea, W. Sensitization to the behavioral effects of cocaine: modulation by dynorphin and κ-opioid receptor agonists. Pharmacol. Biochem. Behav.57, 449–455 (1997). ArticleCASPubMed Google Scholar
Carlezon, W. A. Jr et al. Regulation of cocaine reward by CREB. Science282, 2272–2275 (1998). ArticleCASPubMed Google Scholar
Spangler, R. et al. Regulation of κ opioid receptor mRNA in the rat brain by 'binge' pattern cocaine administration and correlation with preprodynorphin mRNA. Brain Res. Mol. Brain Res.38, 71–76 (1996). ArticleCASPubMed Google Scholar
Cole, A. J., Bhat, R. V., Patt, C., Worley, P. F. & Baraban, J. M. D1 dopamine receptor activation of multiple transcription factor genes in rat striatum. J. Neurochem.58, 1420–1426 (1992). ArticleCASPubMed Google Scholar
Simpson, J. N., Wang, J. Q. & McGinty, J. F. Repeated amphetamine administration induces a prolonged augmentation of phosphorylated cyclase response element-binding protein and Fos-related antigen immunoreactivity in rat striatum. Neuroscience69, 441–457 (1995). ArticleCASPubMed Google Scholar
Lyford, G. L. et al. Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. Neuron14, 433–445 (1995). ArticleCASPubMed Google Scholar
Cole, A. J., Saffen, D. W., Baraban, J. M. & Worley, P. F. Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature340, 474–476 (1989). ArticleCASPubMed Google Scholar
O'Brien, R. J. et al. Synaptic clustering of AMPA receptors by the extracellular immediate-early gene product Narp. Neuron23, 309–323 (1999). ArticleCASPubMed Google Scholar
Yamagata, K. et al. Egr3/Pilot, a zinc finger transcription factor, is rapidly regulated by activity in brain neurons and colocalizes with Egr1/zif268. Learn. Mem.1, 140–152 (1994). CASPubMed Google Scholar
Berridge, K. C. & Robinson, T. E. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res. Brain Res. Rev.28, 309–369 (1998). ArticleCASPubMed Google Scholar