Van Schaftingen, E., Jett, M. F., Hue, L. & Hers, H. G. Control of liver 6-phosphofructokinase by fructose 2,6-bisphosphate and other effectors. Proc. Natl Acad. Sci. USA78, 3483?3486 (1981). ArticleCAS Google Scholar
Embi, N., Rylatt, D. B. & Cohen, P. Glycogen synthase kinase-3 from rabbit skeletal muscle; separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur. J. Biochem.107, 519?527 (1980). ArticleCAS Google Scholar
Parker, P. J. J., Caudwell, F. B. & Cohen, P. Glycogen synthase from rabbit skeletal muscle: effect of insulin on the state of phosphorylation of the seven phosphoserine residues in vivo. Eur. J. Biochem.130, 227?234 (1983). ArticleCAS Google Scholar
Hughes, K., Ramakrishna, S., Benjamin, W. B. & Woodgett, J. R. Identification of multifunctional ATP-citrate lyase kinase as the α-isoform of glycogen synthase kinase-3. Biochem. J.288, 309?314 (1992). ArticleCAS Google Scholar
Welsh, G. I. & Proud, C. G. Glycogen synthase kinase-3 is rapidly inactivated in response to insulin and phosphorylates eukaryotic initiation factor eIF-2B. Biochem. J.294, 625?629 (1993). ArticleCAS Google Scholar
Cross, D. A., Alessi, D. R., Cohen, P., Andjelkovich, M. & Hemmings, B. A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature378, 785?789 (1995). ArticleCAS Google Scholar
Alessi, D. R. et al. Characterisation of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Bα. Curr. Biol.7, 261?269 (1997). ArticleCAS Google Scholar
Fiol, C. J., Mahrenholz, A. M., Wang, Y., Roeske, R. W. & Roach, P. J. Formation of protein kinase recognition sites by covalent modification of the substrate. Molecular mechanism for the synergistic action of casein kinase II and glycogen synthase kinase 3. J. Biol. Chem.262, 14042?14048 (1987). CASPubMed Google Scholar
Frame, S., Cohen, P. & Biondi, R. M. A common phosphate binding site explains the unique substrate specificity of GSK3 and its inactivation by phosphorylation. Mol. Cell7, 1321?1327 (2001). ArticleCAS Google Scholar
Dajani, R. et al. Crystal structure of glycogen synthase kinase 3β: structural basis for phosphate-primed substrate specificity and autoinhibition. Cell105, 721?732 (2001). ArticleCAS Google Scholar
ter Haar, E. et al. Structure of GSK3β reveals a primed phosphorylation mechanism. Nature Struct. Biol.8, 593?596 (2001). ArticleCAS Google Scholar
Hughes, K., Nikolakaki, E., Plyte, S. E., Totty, N. F. & Woodgett, J. R. Modulation of the glycogen synthase kinase-3 family by tyrosine phosphorylation. EMBO J.12, 803?808 (1993). ArticleCAS Google Scholar
Stambolic, V. & Woodgett, J. R. Mitogen inactivation of glycogen synthase kinase-3β in intact cells via serine 9 phosphorylation. Biochem. J.303, 701?704 (1994). ArticleCAS Google Scholar
Shaw, M. & Cohen, P. Role of protein kinase B and the MAP kinase cascade in mediating the EGF-dependent inhibition of glycogen synthase kinase 3 in Swiss 3T3 cells. FEBS Lett.461, 120?124 (1999). ArticleCAS Google Scholar
Armstrong, J. L., Bonavaud, S. M., Toole, B. J. & Yeaman, S. J. Regulation of glycogen synthesis by amino acids in cultured human muscle cells. J. Biol. Chem.276, 952?956 (2001). ArticleCAS Google Scholar
Fang, X. et al. Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proc. Natl Acad. Sci. USA97, 11960?11965 (2000). ArticleCAS Google Scholar
Li, M. et al. Cyclic AMP promotes neuronal survival by phosphorylation of glycogen synthase kinase 3β. Mol. Cell. Biol.20, 9356?9363 (2000). ArticleCAS Google Scholar
Frame, S. & Cohen, P. GSK3 takes centre stage more than 20 years after its discovery. Biochem. J.359, 1?16 (2001). ArticleCAS Google Scholar
Alt, J. R., Cleveland, J. L., Hannink, M. & Diehl, J. A. Phosphorylation-dependent regulation of cyclin D1 nuclear export and cyclin D1-dependent cellular transformation. Genes Dev.14, 3102?3114 (2000). ArticleCAS Google Scholar
Diehl, J. A., Cheng, M., Roussel, M. F. & Sherr, C. J. Glycogen synthase kinase-3β regulates cyclin D1 proteolysis and subcellular localization. Genes Dev.12, 3499?3511 (1998). ArticleCAS Google Scholar
Sears, R. et al. Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev.14, 2501?2514 (2000). ArticleCAS Google Scholar
Nikolakaki, E., Coffer, P. J., Hemelsoet, R., Woodgett, J. R. & Defize, L. H. Glycogen synthase kinase 3 phosphorylates Jun family members in vitro and negatively regulates their transactivating potential in intact cells. Oncogene8, 833?840 (1993). CASPubMed Google Scholar
Sabbah, M., Courilleau, D., Mester, J. & Redeuilh, G. Estrogen induction of the cyclin D1 promoter: involvement of a cAMP response-like element. Proc. Natl Acad. Sci. USA96, 11217?11222 (1999). ArticleCAS Google Scholar
Siegfried, E., Chou, T. B. & Perrimon, N. Wingless signaling acts through zeste-white 3, the Drosophila homolog of glycogen synthase kinase-3, to regulate engrailed and establish cell fate. Cell71, 1167?1179 (1992). ArticleCAS Google Scholar
Pierce, S. B. & Kimelman, D. Regulation of Spemann organizer formation by the intracellular kinase Xgsk-3. Development121, 755?765 (1995). CASPubMed Google Scholar
He, X., Saint-Jeannet, J. P., Woodgett, J. R., Varmus, H. E. & Dawid, I. B. Glycogen synthase kinase-3 and dorsoventral patterning in Xenopus embryos. Nature374, 617?622 (1995). ArticleCAS Google Scholar
Kao, K. R., Masui, Y. & Elinson, R. P. Lithium-induced respecification of pattern in Xenopus laevis embryos. Nature322, 371?373 (1986). ArticleCAS Google Scholar
Klein, P. S. & Melton, D. A. A molecular mechanism for the effect of lithium on development. Proc. Natl Acad. Sci. USA93, 8455?8459 (1996). ArticleCAS Google Scholar
Stambolic, V., Ruel, L. & Woodgett, J. R. Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr. Biol.6, 1664?1668 (1996). ArticleCAS Google Scholar
Zeng, L. et al. The mouse fused locus encodes axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell90, 181?192 (1997). ArticleCAS Google Scholar
Ikeda, S. et al. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3β and β-catenin and promotes GSK-3β-dependent phosphorylation of β-catenin. EMBO J.17, 1371?1384 (1998). ArticleCAS Google Scholar
Hart, M. J., de los Santos, R., Albert, I. N., Rubinfeld, B. & Polakis, P. Downregulation of β-catenin by human axin and its association with the APC tumor suppressor, β-catenin and GSK3β. Curr. Biol.8, 573?581 (1998). ArticleCAS Google Scholar
Li, L. et al. Axin and Frat1 interact with dvl and GSK, bridging Dvl to GSK in Wnt-mediated regulation of LEF-1. EMBO J.18, 4233?4240 (1999). ArticleCAS Google Scholar
Yost, C. et al. GBP, an inhibitor of GSK-3, is implicated in Xenopus development and oncogenesis. Cell93, 1031?1041 (1998). ArticleCAS Google Scholar
Ding, V. W., Chen, R. H. & McCormick, F. Differential regulation of glycogen synthase kinase 3β by insulin and Wnt signaling. J. Biol. Chem.275, 32475?32481 (2000). ArticleCAS Google Scholar
Ruel, L., Stambolic, V., Ali, A., Manoukian, A. S. & Woodgett, J. R. Regulation of the protein kinase activity of Shaggy (Zeste-white3) by components of the Wingless pathway in Drosophila cells and embryos. J. Biol. Chem.274, 21790?21796 (1999). ArticleCAS Google Scholar
Thomas, G. M. et al. A GSK3-binding peptide from FRAT1 selectively inhibits the GSK3-catalysed phosphorylation of axin and β-catenin. FEBS Lett.458, 247?251 (1999). ArticleCAS Google Scholar
Hoeflich, K. P. et al. Requirement for glycogen synthase kinase-3β in cell survival and NF-κB activation. Nature406, 86?90 (2000). ArticleCAS Google Scholar
Eldar-Finkelman, H., Schreyer, S. A., Shinohara, M. M., LeBoeuf, R. C. & Krebs, E. G. Increased glycogen synthase kinase-3 activity in diabetes- and obesity-prone C57BL/6J mice. Diabetes48, 1662?1666 (1999). ArticleCAS Google Scholar
Coghlan, M. P. et al. Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription. Chem. Biol.7, 793?803 (2000). ArticleCAS Google Scholar
Lochhead, P. A., Coghlan, M., Rice, S. Q. J. & Sutherland, C. Inhibition of GSK-3 selectively reduces glucose-6-phosphatase and phosphoenolpyruvate carboxykinase gene expression. Diabetes50, 1?10 (2001). Article Google Scholar
Norman, P. Emerging fundamental themes in modern medicinal chemistry. Drug News Perspect.14, 242?247 (2001). CASPubMed Google Scholar
Yoshida, H. & Ihara, Y. Tau in paired helical filaments is functionally distinct from fetal tau: assembly incompetence of paired helical filament-tau. J. Neurochem.61, 1183?1186 (1993). ArticleCAS Google Scholar
Polakis, P. Wnt signaling and cancer. Genes Dev.14, 1837?1851 (2000). CAS Google Scholar
Harada, N. et al. Intestinal polyposis in mice with a dominant stable mutation of the β-catenin gene. EMBO J.18, 5931?5942 (1999). ArticleCAS Google Scholar
Woods, Y. et al. The kinase DYRK phosphorylates protein synthesis initiation factor eIF2Bɛ at Ser539 and the microtubule-associated protein tau at Thr212: potential role for DYRK as a glycogen synthase kinase 3-priming kinase. Biochem. J.355, 609?615 (2001). ArticleCAS Google Scholar
Pap, M. & Cooper, G. M. Role of glycogen synthase kinase-3 in the phosphatidylinositol 3-kinase/Akt cell survival pathway. J. Biol. Chem.273, 19929?19932 (1998). ArticleCAS Google Scholar
Hanger, D. P., Hughes, K., Woodgett, J. R., Brion, J. P. & Anderton, B. H. Glycogen synthase kinase-3 induces Alzheimer's disease-like phosphorylation of tau: generation of paired helical filament epitopes and neuronal localisation of the kinase. Neurosci. Lett.147, 58?62 (1992). ArticleCAS Google Scholar
Mandelkow, E. M. et al. Glycogen synthase kinase-3 and the Alzheimer-like state of microtubule-associated protein tau. FEBS Lett.314, 315?321 (1992). ArticleCAS Google Scholar
Munoz-Montano, J. R., Moreno, F. J., Avila, J. & Diaz-Nido, J. Lithium inhibits Alzheimer's disease-like tau protein phosphorylation in neurons. FEBS Lett.411, 183?188 (1997). ArticleCAS Google Scholar
Bramblett, G. T. et al. Abnormal tau phosphorylation at Ser396 in Alzheimer's disease recapitulates development and contributes to reduced microtubule binding. Neuron10, 1089?1099 (1993). ArticleCAS Google Scholar
Cross, D. A. et al. Selective small-molecule inhibitors of glycogen synthase kinase-3 activity protect primary neurones from death. J. Neurochem.77, 94?102 (2001). ArticleCAS Google Scholar
Bienz, M. & Clevers, H. Linking colorectal cancer to Wnt signaling. Cell103, 311?320 (2000). ArticleCAS Google Scholar
Weng, Q. P., Andrabi, K., Kozlowski, M. T., Grove, J. R. & Avruch, J. Multiple independent inputs are required for activation of the p70 S6 kinase. Mol. Cell. Biol.15, 2333?2340 (1995). ArticleCAS Google Scholar
Kim, L. & Kimmel, A. R. GSK3, a master switch regulating cell-fate specification and tumorigenesis. Curr. Opin. Genet. Dev.10, 508?514 (2000). ArticleCAS Google Scholar
Seidensticker, M. J. & Behrens, J. Biochemical interactions in the Wnt pathway. Biochim. Biophys. Acta1495, 168?182 (2000). ArticleCAS Google Scholar
Williams, M. R. et al. The role of 3-phosphoinositide-depen-dent protein kinase 1 in activating AGC kinases defined in embryonic stem cells. Curr. Biol.10, 439?448 (2000). ArticleCAS Google Scholar
Friedman, D. L. & Larner, J. Studies on UDPG-α-glucan transglucosylase III. Interconversion of two forms of muscle UDPG-α-glucan transglucosylase by a phosphorylation?dephosphorylation reaction sequence. Biochemistry2, 669?675 (1963). ArticleCAS Google Scholar
Craig, J. W. & Larner, J. Influence of epinephrine and insulin on uridine diphosphate glucose-α-glucan transferase and phosphorylase in muscle. Nature202, 971?973 (1964). ArticleCAS Google Scholar
Cohen, P. The hormonal control of glycogen metabolism in mammalian muscle by multivalent phosphorylation. 'The Fifteenth Colworth Medal Lecture'. Biochem. Soc. Trans.7, 459?480 (1978). Article Google Scholar
Woodgett, J. Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J.9, 2431?2438 (1990). ArticleCAS Google Scholar
Boyle, W. J. et al. Activation of protein kinase C decreases phosphorylation of _c_-Jun at sites that negatively regulate its DNA-binding activity. Cell64, 573?584 (1991). ArticleCAS Google Scholar
Sutherland, C. & Cohen, P. The alpha-isoform of glycogen synthase kinase-3 from rabbit skeletal muscle is inactivated by p70 S6 kinase or MAP kinase-activated protein kinase-1 in vitro. FEBS Lett.338, 37?42 (1994). ArticleCAS Google Scholar
Cross, D. A. et al. The inhibition of glycogen synthase kinase-3 by insulin or insulin-like growth factor 1 in the rat skeletal muscle cell line L6 is blocked by wortmannin, but not by rapamycin: evidence that wortmannin blocks activation of the mitogen-activated protein kinase pathway in L6 cells between Ras and Raf. Biochem. J.303, 21?26 (1994). ArticleCAS Google Scholar
Yost, C. et al. The axis-inducing activity, stability, and subcellular distribution of β-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev.10, 1443?1454 (1996). ArticleCAS Google Scholar
Rubinfeld, B. et al. Binding of GSK3β to the APC?β-catenin complex and regulation of complex assembly. Science272, 1023?1026 (1996). ArticleCAS Google Scholar
Alessi, D. R. et al. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J.15, 6541?6551 (1996). ArticleCAS Google Scholar