The ETS-domain transcription factor family (original) (raw)
Nunn, M. F., Seeburg, P. H., Moscovici, C. & Duesberg, P. H. Tripartite structure of the avian erythroblastosis virus E26 transforming gene. Nature306, 391–395 (1983). CASPubMed Google Scholar
Leprince, D. et al. Putative second cell-derived oncogene of the avian leukaemia retrovirus E26. Nature306, 395–397 (1983). CASPubMed Google Scholar
Karim, F. D. et al. The ETS-domain: a new DNA-binding motif that recognises a purine-rich core DNA sequence. Genes Dev.4, 1451–1453 (1990). CASPubMed Google Scholar
Degnan, B. M., Degnan, S. M., Naganuma, T. & Morese, D. E. The ets multigene family is conserved throughout the Metazoa. Nucleic Acids Res.21, 3479–3484 (1993). CASPubMedPubMed Central Google Scholar
Laudet, V., Niel, C., Duterque-Coquillaud, M., Leprince, D. & Stehelin, D. Evolution of the ets gene family. Biochem. Biophys. Res. Commun.190, 8–14 (1993). CASPubMed Google Scholar
Sharrocks, A. D., Brown, A. L., Ling, Y. & Yates, P. R. The ETS-domain transcription factor family. Int. J. Biochem. Cell Bio.29, 1371–1387 (1997). CAS Google Scholar
Graves, B. J. & Petersen, J. M. in Adv. Cancer Res. Specificity within the ets family of transcription factors (eds van de Woude, G. and Klein, G.) 1–55 (Academic, 1998).
Klambt C. The Drosophila gene pointed encodes two ETS-like proteins which are involved in the development of the midline glial cells. Development117, 163–176 (1993). CASPubMed Google Scholar
Lacronique, V. et al. A TEL–JAK2 fusion protein with constitutive kinase activity in human leukaemia. Science278, 1309–1312 (1997). CASPubMed Google Scholar
Kim, C. A. et al. Polymerization of the SAM domain of TEL in leukemogenesis and transcriptional repression. EMBO J.20, 4173–4182 (2001). CASPubMedPubMed Central Google Scholar
Baker, D. A., Mille-Baker, B., Wainwright, S. M., Ish-Horowicz, D. & Dibb, N. J. Mae mediates MAP kinase phosphorylation of Ets transcription factors in Drosophila. Nature411, 330–334 (2001).This describes the identification of Mae, which binds to Yan and potentiates its phosphorylation by MAPKs. CASPubMed Google Scholar
Fenrick, R. et al. Both TEL and AML-1 contribute repression domains to the t(12;21) fusion protein. Mol. Cell. Biol.19, 6566–6574 (1999). CASPubMedPubMed Central Google Scholar
Dittmer, J. & Nordheim, A. Ets transcription factors and human disease. Biochim. Biophys. Acta1377, F1–F11 (1998). CASPubMed Google Scholar
Wasylyk. B., Hagman, J. & Gutierrez-Hartmann, A. Ets transcription factors: nuclear effectors of the Ras-MAP-kinase signalling pathway. Trends Biochem. Sci.23, 213–216 (1998). CASPubMed Google Scholar
Li, R., Pei, H. & Watson, D. K. Regulation of Ets function by protein–protein interactions. Oncogene19, 514–523 (2000). Google Scholar
Liang, H. et al. Solution structure of Fli-1 when bound to DNA. Nature Struct. Biol.1, 871–876 (1994).The first solution structure of an ETS DNA-binding domain. CASPubMed Google Scholar
Donaldson, L. W., Petersen, J. M., Graves, B. J. & McIntosh, L. P. Solution structure of the ETS-domain from murine Ets-1: a winged helix–turn–helix motif. EMBO J.15, 125–134 (1996). CASPubMedPubMed Central Google Scholar
Werner, M. H. et al. Correction of the NMR structure of the ETS1/DNA complex. J. Biomol. NMR10, 317–328 (1997). CASPubMed Google Scholar
Kodandapani, R. A new pattern for helix–turn–helix recognition revealed by the PU.1 ETS-domain DNA complex. Nature380, 456–460 (1996).The first structure of an ETS DNA-binding domain–DNA complex. CASPubMed Google Scholar
Batchelor, A. H., Piper, D. E., de la Brousse, F. C., McKnight, S. L. & Wolberger, C. The structure of GABPα/β: an ETS-domain-ankyrin repeat heterodimer bound to DNA. Science279, 1037–1041 (1998). CASPubMed Google Scholar
Mo, Y., Vaessen, B., Johnston, K. & Marmorstein, R. Structures of SAP-1 bound to DNA sequences from the E74 and c-fos promoters provide insights into how ETS proteins discriminate between related DNA targets. Mol. Cell8, 210–212 (1998). Google Scholar
Mo, Y., Vaessen, B., Johnston, K. & Marmorstein, R. Structure of the elk-1-DNA complex reveals how DNA-distal residues affect ETS domain recognition of DNA. Nature Struct. Biol.7, 292–297 (2000).This study provided structural insights into the determination of DNA-binding specificity by the ETS domain. CASPubMed Google Scholar
Shore, P. et al. Determinants of DNA-binding specificity of ETS-domain transcription factors. Mol. Cell. Biol.16, 3338–3349 (1996). CASPubMedPubMed Central Google Scholar
Fitzsimmons, D. et al. Pax-5 (BSAP) recruites Ets proto-oncogene family proteins to form functional ternary complexes on a B-cell-specific promoter. Genes Dev.10, 2198–2211 (1996). CASPubMed Google Scholar
Jonsen, M. D., Petersen, J. M., Xu, Q.-P. & Graves, B. J. Characterisation of the co-operative function of inhibitory sequences in Ets-1. Mol. Cell. Biol.16, 2065–2073 (1996). CASPubMedPubMed Central Google Scholar
Skalicky, J. J., Donaldson, L. W., Petersen, J. M., Graves, B. J. & McIntosh, L. P. Structural coupling of the inhibitory regions flanking the ETS-domain of murine Ets-1. Protein Sci.5, 296–309 (1996). CASPubMedPubMed Central Google Scholar
Petersen, J. M. et al. Modulation of transcription factor Ets-1 DNA binding: DNA-induced unfolding of an α-helix. Science269, 1866–1869 (1995).This shows that conformational changes in an inhibitory module of Ets-1 result in loss of DNA-binding autoinhibition. CASPubMed Google Scholar
Kim, W. Y. Mutual activation of Ets-1 and AML1 DNA binding by direct interaction of their autoinhibitory domains. EMBO J.18, 1609–1620 (1999). CASPubMedPubMed Central Google Scholar
Goetz, T. L., Gu, T. L., Speck, N. A. & Graves, B. J. Auto-inhibition of Ets-1 is counteracted by DNA binding cooperativity with core-binding factor α2. Mol. Cell. Biol.20, 81–90 (2000). CASPubMedPubMed Central Google Scholar
Cowley, D. O. & Graves, B. J. Phosphorylation represses Ets-1 DNA binding by reinforcing autoinhibition. Genes Dev.14, 366–376 (2000). CASPubMedPubMed Central Google Scholar
Yang, S. H., Shore, P., Willingham, N., Lakey, J. H. & Sharrocks, A. D. The mechanism of phosphorylation-inducible activation of the ETS-domain transcription factor Elk-1. EMBO J.18, 5666–5674 (1999). CASPubMedPubMed Central Google Scholar
Hipskind, R. A., Rao, V. N., Mueller, C. G., Reddy, E. S. & Nordheim, A. Ets-related protein Elk-1 is homologous to the c-fos regulatory factor p62TCF. Nature354, 531–534 (1991). CASPubMed Google Scholar
Dalton, S. & Treisman, R. Characterisation of SAP-1, a protein recruited by serum response factor to the c-fos serum response element. Cell68, 597–612 (1992). CASPubMed Google Scholar
Yates, P. R., Atherton, G. T., Deed, R. W., Norton, J. D. & Sharrocks, A. D. Id helix–loop–helix proteins inhibit nucleoprotein complex formation by the TCF ETS-domain transcription factors. EMBO J.18, 968–976 (1999). CASPubMedPubMed Central Google Scholar
Brass, A. L., Kehrli, E., Eisenbeis, C. F., Storb, U. & Singh, H. Pip, a lymphoid-restricted IRF, contains a regulatory domain that is important for autoinhibition and ternary complex formation with the Ets factor PU.1. Genes Dev.10, 2335–2347 (1996). CASPubMed Google Scholar
Greenall, A., Willingham, N., Cheung, E., Boam, D. S. & Sharrocks, A. D. DNA binding by the ETS-domain transcription factor PEA3 is regulated by intramolecular and intermolecular protein–protein interactions. J. Biol. Chem.276, 16207–16215 (2001). CASPubMed Google Scholar
Brass, A. L., Zhu, A. Q. & Singh, H. Assembly requirements of PU.1–Pip (IRF-4) activator complexes: inhibiting function in vivo using fused dimers. EMBO J.18, 977–991 (1999). CASPubMedPubMed Central Google Scholar
Shore, P. & Sharrocks, A. D. The transcription factors Elk-1 and serum response factor interact by direct protein–protein contacts mediated by a short region of Elk-1. Mol. Cell. Biol.14, 283–291 (1994). Google Scholar
Hassler, M. & Richmond, T. J. The B-box dominates SAP-1–SRF interactions in the structure of the ternary complex. EMBO J.20, 3018–3028 (2001).The structure of the SRF–SAP-1 complex, illustrating how recruitment of the ETS-domain protein SAP-1 is enhanced by protein–protein interactions with SRF. CASPubMedPubMed Central Google Scholar
Criqui-Filipe, P., Ducret, C., Maira, S. M. & Wasylyk, B. Net, a negative Ras-switchable TCF, contains a second inhibition domain, the CID, that mediates repression through interactions with CtBP and de-acetylation. EMBO J.18, 3392–3403 (1999). CASPubMedPubMed Central Google Scholar
Yang, S. H., Vickers, E., Brehm, A., Kouzarides, T. & Sharrocks, A. D. Temporal recruitment of the mSin3A-histone deacetylase corepressor complex to the ETS domain transcription factor Elk-1. Mol. Cell. Biol.21, 2802–2814 (2001).This shows that Elk-1 can act as both an activator and repressor protein, with the ETS-domain showing repressive activity. CASPubMedPubMed Central Google Scholar
Yang, C., Shapiro, L. H., Rivera, M., Kumar, A. & Brindle, P. K. A role for CREB binding protein and p300 transcriptional coactivators in Ets-1 transactivation functions. Mol. Cell. Biol.18, 2218–2229 (1998). CASPubMedPubMed Central Google Scholar
Papoutsopoulou, S. & Janknecht, R. Phosphorylation of ETS transcription factor ER81 in a complex with its coactivators CREB-binding protein and p300. Mol. Cell. Biol.20, 7300–7310 (2000). CASPubMedPubMed Central Google Scholar
Janknecht, R. & Nordheim, A. Regulation of the c-fos promoter by the ternary complex factor Sap-1a and its coactivator CBP. Oncogene12, 1961–1969 (1996). CASPubMed Google Scholar
Gille, H., Sharrocks, A. D. & Shaw, P. E. Phosphorylation of transcription factor p62TCF by MAP kinase stimulates ternary complex formation at c-fos promoter. Nature358, 414–417 (1992).The first demonstration that an ETS-domain protein, Elk-1/p62TCF, is a target of the MAPK pathways. CASPubMed Google Scholar
Gille, H. et al. ERK phosphorylation potentiates Elk-1-mediated ternary complex formation and transactivation. EMBO J.14, 951–962 (1995). CASPubMedPubMed Central Google Scholar
Marais, R., Wynne, J. & Treisman, R. The SRF accessory protein Elk-1 contains a growth factor-regulated transcriptional activation domain. Cell73, 381–393 (1993). CASPubMed Google Scholar
Whitmarsh, A. J., Shore, P., Sharrocks, A. D. & Davis, R. J. Integration of MAP kinase signal transduction pathways at the serum response element. Science269, 403–407 (1995). CASPubMed Google Scholar
Price, M. A., Cruzalegui, F. H. & Treisman, R. The p38 and ERK MAP kinase pathways co-operate to activate ternay complex factors and c-fos transcription in response to UV light. EMBO J.15, 6552–6563 (1996). CASPubMedPubMed Central Google Scholar
Ducret, C., Maira, S. M., Dierich, A. & Wasylyk, B. The net repressor is regulated by nuclear export in response to anisomycin, UV, and heat shock. Mol. Cell. Biol.19, 7076–7087 (1999). CASPubMedPubMed Central Google Scholar
Yang, B. S. et al. Ras-mediated phosphorylation of a conserved threonine residue enhances the transactivation activities of c-Ets1 and c-Ets2. Mol. Cell. Biol.16, 538–547 (1996). CASPubMedPubMed Central Google Scholar
McCarthy, S. A. et al. Rapid phosphorylation of Ets-2 accompanies mitogen-activated protein kinase activation and the induction of heparin-binding epidermal growth factor gene expression by oncogenic Raf-1. Mol. Cell. Biol.17, 2401–2412 (1997). CASPubMedPubMed Central Google Scholar
Le Gallic, L., Sgouras, D., Beal, G. Jr & Mavrothalassitis, G. Transcriptional repressor ERF is a Ras/mitogen-activated protein kinase target that regulates cellular proliferation. Mol. Cell. Biol.19, 4121–4133 (1999). CASPubMedPubMed Central Google Scholar
Rebay, I. & Rubin, G. M. Yan functions as a general inhibitor of differentiation and is negatively regulated by activation of the Ras1/MAPK pathway. Cell81, 857–866 (1995). CASPubMed Google Scholar
Tan, P. B., Lackner, M. R. & Kim, S. K. MAP kinase signaling specificity mediated by the LIN-1 Ets/LIN-31 WH transcription factor complex during C. elegans vulval induction. Cell93, 569–580 (1998).This shows that the ETS-domain transcription factor LIN-1 is a target of the MAPK signalling pathway inC. elegans. CASPubMed Google Scholar
Yang, S.-H., Whitmarsh, A. J., Davis, R. J. & Sharrocks, A. D. The Elk-1 ETS-domain transcription factor contains a MAP kinase-targeting motif. Mol. Cell. Biol.18, 710–720 (1998). CASPubMedPubMed Central Google Scholar
Yang, S. -H., Whitmarsh, A. J., Davis, R. J. & Sharrocks, A. D. Differential targeting of MAP kinases to the ETS-domain transcription factor Elk-1. EMBO J.17, 1740–1749 (1998). CASPubMedPubMed Central Google Scholar
Jacobs, D. et al. Gain-of-function mutations in the Caenorhabditis elegans lin-1 ETS gene identify a C-terminal regulatory domain phosphorylated by ERK MAP kinase. Genetics149, 1809–1822 (1998). CASPubMedPubMed Central Google Scholar
Jacobs, D., Glossip, D., Xing, H., Muslin, A. J. & Kornfeld, K. Multiple docking sites on substrate proteins form a modular system that mediates recognition by ERK MAP kinase. Genes Dev.13, 163–175 (1999).The identification of a complex MAPK docking module in a subset of ETS-domain proteins. CASPubMedPubMed Central Google Scholar
Ducret, C., Maira, S. M., Lutz, Y. & Wasylyk, B. The ternary complex factor Net contains two distinct elements that mediate different responses to MAP kinase signalling cascades. Oncogene19, 5063–5072 (2000). CASPubMed Google Scholar
Eisenbeis, C. F., Singh, H. & Storb, U. Pip, a novel IRF family member, is a lymphoid-specific, PU.1-dependent transcriptional activator. Genes Dev.9, 1377–1387 (1995). CASPubMed Google Scholar
Pongubala, J. M. R. et al. Effect of PU.1 phosphorylation on interaction with N5-EMS and transcriptional activation. Science259, 1622–1625 (1993). CASPubMed Google Scholar
Chung, K. C., Gomes, I., Wang, D., Lau, L. F. & Rosner, M. R. Raf and fibroblast growth factor phosphorylate Elk1 and activate the serum response element of the immediate early gene pip92 by mitogen-activated protein kinase-independent as well as -dependent signaling pathways. Mol. Cell. Biol.18, 2272–2281 (1998). CASPubMedPubMed Central Google Scholar
Sugimoto, T., Stewart, S. & Guan, K. L. The calcium/calmodulin-dependent protein phosphatase calcineurin is the major Elk-1 phosphatase. J. Biol. Chem.272, 29415–29418 (1997). CASPubMed Google Scholar
Tian, J. & Karin, M. Stimulation of Elk1 transcriptional activity by mitogen-activated protein kinases is negatively regulated by protein phosphatase 2B (calcineurin). J. Biol. Chem.274, 15173–15180 (1999). CASPubMed Google Scholar
Mavrothalassitis, G. & Ghysdael, J. Proteins of the ETS family with transcriptional repressor activity. Oncogene19, 6524–6532 (2000). CASPubMed Google Scholar
Maira, S. M., Wurtz, J. M. & Wasylyk, B. Net (ERP/SAP2) one of the Ras-inducible TCFs, has a novel inhibitory domain with resemblance to the helix–loop–helix motif. EMBO J.15, 5849–5865 (1996). CASPubMedPubMed Central Google Scholar
Guidez, F. et al. Recruitment of the nuclear receptor corepressor N-CoR by the TEL moiety of the childhood leukemia-associated TEL–AML1 oncoprotein. Blood96, 2557–2561 (2000). CASPubMed Google Scholar
Treisman, R. Ternary complex factors: growth regulated transcriptional activators. Curr. Opin. Genet. Dev.4, 96–101 (1994). CASPubMed Google Scholar
Sevilla, L. et al. The Ets2 transcription factor inhibits apoptosis induced by colony-stimulating factor 1 deprivation of macrophages through a Bcl-xL-dependent mechanism. Mol. Cell. Biol.19, 2624–2634 (1999). CASPubMedPubMed Central Google Scholar
Taylor, J. M. et al. A role for the ETS domain transcription factor PEA3 in myogenic differentiation. Mol. Cell. Biol.17, 5550–5558 (1997). CASPubMedPubMed Central Google Scholar
Ohtani, N. Opposing effects of Ets and Id proteins on p16INK4a expression during cellular senescence. Nature409, 1067–1070 (2001). CASPubMed Google Scholar
Bories, J. C. et al. Increased T-cell apoptosis and terminal B-cell differentiation induced by inactivation of the Ets-1 proto-oncogene. Nature377, 635–638 (1995). CASPubMed Google Scholar
Muthusamy, N., Barton, K. & Leiden, J. M. Defective activation and survival of T cells lacking the Ets-1 transcription factor. Nature377, 639–642 (1995).References73and74use 'tissue-specific' mouse knockouts to show a role for Ets-1 in T- and B-cell differentiation/survival. CASPubMed Google Scholar
Scott, E. W., Simon, M. C., Anastasi, J. & Singh, H. Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science265, 1573–1577 (1994). CASPubMed Google Scholar
McKercher, S. R. et al. Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J.15, 5647–5658 (1996).References75and76use mouse knockouts to show the importance of PU.1 in the development of several haematopoietic lineages. CASPubMedPubMed Central Google Scholar
Scott, E. W. et al. PU.1 functions in a cell-autonomous manner to control the differentiation of multipotential lymphoid–myeloid progenitors. Immunity6, 437–447 (1997). CASPubMed Google Scholar
Tondravi, M. M. Osteopetrosis in mice lacking haematopoietic transcription factor PU.1. Nature386, 81–84 (1997). CASPubMed Google Scholar
DeKoter, R. P. & Singh, H. Regulation of B lymphocyte and macrophage development by graded expression of PU.1. Science288, 1439–1441 (2000).This shows how different concentrations of an ETS-domain protein (PU.1) result in the differentiation of two haematopoietic lineages. CASPubMed Google Scholar
Spyropoulos, D. D. et al. Haemorrhage, impaired haematopoiesis, and lethality in mouse embryos carrying a targeted disruption of the Fli1 transcription factor. Mol. Cell. Biol.20, 5643–5652 (2000). CASPubMedPubMed Central Google Scholar
Lelievre, E., Lionneton, F., Soncin, F. & Vandenbunder, B. The Ets family contains transcriptional activators and repressors involved in angiogenesis. Int. J. Biochem. Cell Biol.33, 391–407 (2001). CASPubMed Google Scholar
Wang, L. C. et al. Yolk sac angiogenic defect and intra-embryonic apoptosis in mice lacking the Ets-related factor TEL. EMBO J.16, 4374–4383 (1997). CASPubMedPubMed Central Google Scholar
Wang, L. C. et al. The TEL/ETV6 gene is required specifically for haematopoiesis in the bone marrow. Genes Dev.12, 2392–2402 (1998). CASPubMedPubMed Central Google Scholar
Ayadi, A. et al. Net-targeted mutant mice develop a vascular phenotype and up-regulate egr-1. EMBO J.20, 5139–5152 (2001). CASPubMedPubMed Central Google Scholar
Roehl, H. & Nusslein-Volhard, C. Zebrafish pea3 and erm are general targets of FGF8 signaling. Curr. Biol.11, 503–507 (2001). CASPubMed Google Scholar
Lin, J. H. et al. Functionally related motor neuron pool and muscle sensory afferent subtypes defined by coordinate ETS gene expression. Cell95, 393–407 (1998). CASPubMed Google Scholar
Arber, S., Ladle, D., Lin, J. H., Frank, E. & Jessell, T. M. ETS gene Er81 controls the formation of functional connections between group 1a sensory afferents and motor neurons. Cell101, 485–498 (2000).This shows thatER81knockout mice have defects in neuronal connectivities between subsets of neurons. CASPubMed Google Scholar
Laing, M. A. et al. Male sexual dysfunction in mice bearing targeted mutant alleles of the PEA3 ets gene. Mol. Cell. Biol.20, 9337–9345 (2000). CASPubMedPubMed Central Google Scholar
Brunner, D. et al. The ETS domain protein pointed-P2 is a target of MAP kinase in the sevenless signal transduction pathway. Nature370, 386–389 (1994).The identification of pointed-P2 as a target of MAPK in the sevenless pathway duringDrosophilaeye development. CASPubMed Google Scholar
O'Neill, E. M., Rebay, I., Tjian, R. & Rubin, G. M. The activities of two Ets-related transcription factors required for Drosophila eye development are modulated by the Ras/MAPK pathway. Cell78, 137–147 (1994). CASPubMed Google Scholar
Samakovlis, C. et al. Development of the Drosophila tracheal system occurs by a series of morphologically distinct but genetically coupled branching events. Development122, 1395–1407 (1996). CASPubMed Google Scholar
Sementchenko, V. I. & Watson, D. K. Ets target genes: past, present and future. Oncogene19, 6533–6548 (2000). CASPubMed Google Scholar
Tamir, A. et al. Fli-1, an Ets-related transcription factor, regulates erythropoietin-induced erythroid proliferation and differentiation: evidence for direct transcriptional repression of the Rb gene during differentiation. Mol. Cell. Biol.19, 4452–4464 (1999). CASPubMedPubMed Central Google Scholar
Tsai, E. Y. et al. A lipopolysaccharide-specific enhancer complex involving Ets, Elk-1, Sp1, and CREB binding protein and p300 is recruited to the tumor necrosis factor α promoter in vivo. Mol. Cell. Biol.20, 6084–6094 (2000). CASPubMedPubMed Central Google Scholar
Slupsky, T. M. et al. Structure of the Ets-1 pointed domain and mitogen-activated protein kinase phosphorylation site. Proc. Natl Acad. Sci. USA95, 12129–12134 (1998). CASPubMedPubMed Central Google Scholar
Chakrabarti, S. R., Sood, R., Nandi, S. & Nucifora, G. Posttranslational modification of TEL and TEL/AML1 by SUMO-1 and cell-cycle-dependent assembly into nuclear bodies. Proc. Natl Acad. Sci. USA97, 13281–13285 (2000). CASPubMedPubMed Central Google Scholar
Fromm, L. & Burden, S. J. Synapse-specific and neuregulin-induced transcription require an ets site that binds GABPα/GABPβ. Genes Dev.12, 3074–3083 (1998). CASPubMedPubMed Central Google Scholar
Schaeffer, L., Duclert, N., Huchet-Dymanus, M. & Changeux, J. P. Implication of a multisubunit Ets-related transcription factor in synaptic expression of the nicotinic acetylcholine receptor. EMBO J.17, 3078–3090 (1998). CASPubMedPubMed Central Google Scholar
Yamamoto, H. et al. Defective trophoblast function in mice with a targeted mutation of Ets2. Genes Dev.12, 1315–1326 (1998). CASPubMedPubMed Central Google Scholar
Xing, X. et al. The ets protein PEA3 suppresses HER-2/neu over expression and inhibits tumorigenesis. Nature Med.6, 189–195 (2000). CASPubMed Google Scholar
Lim, F., Kraut, N., Frampton, J. & Graf, T. DNA binding by c-Ets-1, but not v-Ets, is repressed by an intramolecular mechanism. EMBO J.2, 643–652 (1992). Google Scholar
Golub, T. R. et al. Oligomerization of the ABL tyrosine kinase by the Ets protein TEL in human leukemia. Mol. Cell. Biol.8, 4107–4116 (1996). Google Scholar
Hahm, K. B. et al. Repression of the gene encoding the TGF-β type II receptor is a major target of the EWS–FLI1 oncoprotein. Nature Genet.23, 222–227 (1999). CASPubMed Google Scholar
Kouzarides, T. Histone acetylases and deacetylases in cell proliferation. Curr. Opin. Genet. Dev.9, 40–48 (1999). CASPubMed Google Scholar
Kuo, M. H. & Allis, C. D. In vivo cross-linking and immunoprecipitation for studying dynamic protein:DNA associations in a chromatin environment. Methods19, 425–433 (1999). CASPubMed Google Scholar
Schulze, A. & Downward, J. Navigating gene expression using microarrays–a technology review. Nature Cell Biol.3, E190–E195 (2001). CASPubMed Google Scholar
Sieweke, M. H., Tekotte, H., Jarosch, U. & Graf, T. Cooperative interaction of ets-1 with USF-1 required for HIV-1 enhancer activity in T cells. EMBO J.17, 1728–1739 (1998). CASPubMedPubMed Central Google Scholar
Sieweke, M. H., Tekotte, H., Frampton, J. & Graf, T. MafB is an interaction partner and repressor of Ets-1 that inhibits erythroid differentiation. Cell85, 49–60 (1996). CASPubMed Google Scholar
Nerlov, C., Querfurth, E., Kulessa, H. & Graf, T. GATA-1 interacts with the myeloid PU.1 transcription factor and represses PU.1-dependent transcription. Blood95, 2543–2551 (2000). CASPubMed Google Scholar
Zhang, P. et al. Negative cross-talk between hematopoietic regulators: GATA proteins repress PU.1. Proc. Natl Acad. Sci. USA96, 8705–8710 (1999). CASPubMedPubMed Central Google Scholar
Rekhtman, N., Radparvar, F., Evans, T. & Skoultchi, A. I. Direct interaction of hematopoietic transcription factors PU.1 and GATA-1: functional antagonism in erythroid cells. Genes Dev.13, 1398–1411 (1999). CASPubMedPubMed Central Google Scholar
Tolon, R. M., Castillo, A. I., Jimenez–Lara, A. M. & Aranda, A. Association with Ets-1 causes ligand- and AF2-independent activation of nuclear receptors. Mol. Cell. Biol.20, 8793–8802 (2000). CASPubMedPubMed Central Google Scholar