Transport of cationic amino acids by the mouse ecotropic retrovirus receptor (original) (raw)

Nature volume 352, pages 725–728 (1991)Cite this article

Abstract

SUSCEPTIBILITY of rodent cells to infection by ecotropic murine leukaemia viruses (MuLV) is determined by binding of the virus envelope to a membrane receptor that has multiple membrane-spanning domains1. Cells infected by ecotropic MuLV synthesize envelope protein, gp70, which binds to this receptor, thereby preventing additional infections. The consequences of envelope-MuLV receptor binding for the infected host cell have not been directly determined, partly because the cellular function of the MuLV receptor protein is unknown. Here we report a coincidence in the positions of the first eight putative membrane-spanning domains found in the virus receptor1 and in two related proteins2, the arginine2–4 and histidine2,3,5 permeases of Saccharomyces cerevisiae (Fig. 1), but not in any other proteins identified by computer-based sequence comparison of the Gen Bank data base1. Xenopus oocytes injected with receptor-encoding messenger RNA show increased uptake of L-arginine, L-lysine and L-ornithine. The transport properties and the expression pattern of the virus receptor behave in ways previously attributed to y+ (refs 6, 7), the principal transporter of cationic L-amino acids in mammalian cells.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Albritton, L. M., Tseng, L., Scadden, D. & Cunningham, J. M. Cell 57, 659–666 (1989).
    Article CAS PubMed Google Scholar
  2. Weber, E., Chevalier, M. R. & Jund, R. J. molec. Evol. 27, 342–350 (1988).
    Article ADS Google Scholar
  3. Cooper, T. G. in The Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression (eds Strathern, J., Jones, E. & Broach, J. R.) 399–461 (Cold Spring Harbor Laboratory, New York, 1982).
    Google Scholar
  4. Hoffmann, W. J. biol. Chem. 21, 11831–11837 (1985).
    Google Scholar
  5. Tanaka, J. & Fink, G. R. Gene 38, 205–214 (1985).
    Article CAS PubMed Google Scholar
  6. White, M. F., Gazzola, G. C. & Christensen, H. N. J. biol. Chem. 257, 4443–4449 (1982).
    CAS PubMed Google Scholar
  7. White, M. F. Biochim. biophys. Acta 822, 355–374 (1985).
    Article CAS PubMed Google Scholar
  8. Melton, D. A. et al. Nucleic Acids Res. 12, 7035–7057 (1984).
    Article CAS PubMed PubMed Central Google Scholar
  9. White, M. F. & Christensen, H. N. J. biol. Chem. 257, 4450–4457 (1982).
    CAS PubMed Google Scholar
  10. Birnbaum, M. S. Cell 57, 305–315 (1989).
    Article CAS PubMed Google Scholar
  11. Rosenberg, L. E., Downing, S. J. & Segal, S. J. biol. Chem. 237, 2265–2271 (1962).
    CAS PubMed Google Scholar
  12. Segal, S., McNamara, P. D. & Pepe, C. M. Science 197, 169–171 (1977).
    Article ADS CAS PubMed Google Scholar
  13. Vadgama, J. V., Castro, M. & Christensen, H. N. J. biol. Chem. 262, 13273–13284 (1987).
    CAS PubMed Google Scholar
  14. Van Winkle, L. J. Biochim. biophys. Acta 947, 173–208 (1988).
    Article CAS PubMed Google Scholar
  15. Pardridge, W. M. & Jefferson, L. S. Am. J. Physiol. 228, 1155–1161 (1975).
    CAS PubMed Google Scholar
  16. Oxender, D. L. & Christensen, H. N. J. biol. Chem. 238, 3686–3699 (1963).
    CAS PubMed Google Scholar
  17. Christensen, H. N., Liang, M. & Archer, E. G. J. biol. Chem. 238, 3686–3699 (1967).
    Google Scholar
  18. Kilberg, M. S., Handlogten, M. E. & Christensen, H. N. J. biol. Chem. 255, 4011–4019 (1980).
    CAS PubMed Google Scholar
  19. Shotwell, M. A., Kilberg, M. S. & Oxender, D. L. Biochim. biophys. Acta 737, 267–284 (1983).
    Article CAS PubMed Google Scholar
  20. White, M. F. & Christensen, H. N. J. biol. Chem. 258, 8028–8038 (1983).
    CAS PubMed Google Scholar
  21. Jaenisch, R. Cell 19, 181–186 (1980).
    Article CAS PubMed Google Scholar
  22. Hatzoglou, M. et al. J. biol. Chem. 265, 17285–17293 (1990).
    CAS PubMed Google Scholar
  23. Segal, S., McNamara, P. D. & Pepe, C. N. Science 197, 169–171 (1977).
    Article ADS CAS PubMed Google Scholar
  24. Samarzija, I. & Fromter, E. Pflugers Arch. 393, 199–205 (1982).
    Article CAS Google Scholar
  25. Desjeux, J. F., Volanthen, M., Dumontier, A. M., Simell, O. & Legrain, M. Pediat. Res. 21, 477–482 (1987).
    Article CAS PubMed Google Scholar
  26. Aronson, D. L. & Diwan, J. J. Biochemistry 20, 7064–7070 (1981).
    Article CAS PubMed Google Scholar
  27. Mueckler, M. et al. Science 229, 941–945 (1985).
    Article ADS CAS PubMed Google Scholar
  28. Hediger, M. A., Coady, M. J., Iheda, T. S. & Wright, E. M. Nature 330, 379–381 (1987).
    Article ADS CAS PubMed Google Scholar
  29. Smith, R. F. & Smith, T. F. Proc. natn. Acad. Sci. U.S.A. 87, 118–122 (1990).
    Article ADS CAS Google Scholar
  30. MacLeod, C. L., Finley, K., Kakuda, D., Kozak, C. A. & Wilkinson, M. F. Molec. cell. Biol. 10, 3663–3674 (1990).
    Article CAS PubMed PubMed Central Google Scholar

Download references

Author information

Authors and Affiliations

  1. Howard Hughes Medical Institute and Division of Hematology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, Massachusetts, 02115, USA
    Jung Woo Kim, Ellen I. Closs, Lorraine M. Albritton & James M. Cunningham

Authors

  1. Jung Woo Kim
    You can also search for this author inPubMed Google Scholar
  2. Ellen I. Closs
    You can also search for this author inPubMed Google Scholar
  3. Lorraine M. Albritton
    You can also search for this author inPubMed Google Scholar
  4. James M. Cunningham
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Kim, J., Closs, E., Albritton, L. et al. Transport of cationic amino acids by the mouse ecotropic retrovirus receptor.Nature 352, 725–728 (1991). https://doi.org/10.1038/352725a0

Download citation

This article is cited by