Location of enhancers is essential for the imprinting of H19 and Igf2 genes (original) (raw)

References

  1. Bartolomei, M. S. & Tilghman, S. M. Parental imprinting of mouse chromosome 7. Semin. Dev. Biol. 3, 107–117 (1992).
    Google Scholar
  2. Yoo-Warren, H., Pachnis, V., Ingram, R. S. & Tilghman, S. M. Two regulatory domains flank the mouse H19 gene. Mol. Cell. Biol. 8, 4707–4715 (1988).
    Article CAS Google Scholar
  3. Leighton, P. A., Saam, J. R., Ingram, R. S., Stewart, C. L. & Tilghman, S. M. An enhancer deletion affects both H19 and Igf2 expression. Genes Dev. 9, 2079–2089 (1995).
    Article CAS Google Scholar
  4. Bartolomei, M. S., Webber, A. L., Brunkow, M. E. & Tilghman, S. M. Epigenetic mechanisms underlying the imprinting of the mouse H19 gene. Genes Dev. 7, 1663–1673 (1993).
    Article CAS Google Scholar
  5. Ferguson-Smith, A. C., Sasaki, H., Cattanach, B. M. & Surani, M. A. Parental-origin-specific epigenetic modifications of the mouse H19 gene. Nature 362, 751–755 (1993).
    Article ADS CAS Google Scholar
  6. Li, E., Beard, C. & Jaenisch, R. The role of DNA methylation in genomic imprinting. Nature 366, 362–365 (1993).
    Article ADS CAS Google Scholar
  7. Choi, O.-R. B. & Engel, J. D. Developmental regulation of β-globin switching. Cell 55, 17–26 (1988).
    Article CAS Google Scholar
  8. Nickol, J. M. & Felsenfeld, G. Bidirectional control of the chicken β- and ε-globin genes by a shared enhancer. Proc. Natl Acad. Sci. USA 85, 2548–2552 (1988).
    Article ADS CAS Google Scholar
  9. Gu, H., Zou, Y.-R. & Rajewsky, K. Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-_loxP_-mediated gene targeting. Cell 73, 1155–1164 (1993).
    Article CAS Google Scholar
  10. Leighton, P. A., Ingram, R. S., Eggenschwiler, J., Efstratiadis, A. & Tilghman, S. M. Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature 375, 34–39 (1995).
    Article ADS CAS Google Scholar
  11. Brunkow, M. E. & Tilghman, S. M. Ectopic expression of the H19 gene in mice causes prenatal lethality. Genes Dev. 5, 1092–1101 (1991).
    Article CAS Google Scholar
  12. Sasaki, H. et al. Parental imprinting: potentially active chromatin of the repressed maternal allele of the mouse insulin-like growth factor (Igf2) gene. Genes Dev. 6, 1843–1856 (1992).
    Article CAS Google Scholar
  13. Feil, R., Walter, J., Allen, N. D. & Reik, W. Developmental control of allelic methylation in the imprinted mouse Igf2 and H19 genes. Development 120, 2933–2943 (1994).
    CAS PubMed Google Scholar
  14. Brandeis, M. et al. The ontogeny of allele-specific methylation associated with imprinted genes in the mouse. EMBO J. 12, 3669–3677 (1993).
    Article CAS Google Scholar
  15. Walter, J. et al. in Epigenetic Mechanisms of Gene Regulation(eds Russo, V. E. A., Martienssen, R. A. & Riggs, A. D.) 195–213 (Cold Spring Harbor Laboratory Press, (1996)).
    Google Scholar
  16. Kellum, R. & Schedl, P. Aposition-effect assay for boundaries of higher order chromosomal domains. Cell 64, 941–950 (1991).
    Article CAS Google Scholar
  17. Kellum, R. & Schedl, P. Agroup of scs elements function as domain boundaries in an enhancer-blocking assay. Mol. Cell Biol. 12, 2424–2431 (1992).
    Article CAS Google Scholar
  18. Ripoche, M.-A., Kress, C., Poirier, F. & Dandolo, L. Deletion of the H19 transcription unit reveals the existence of a putative imprinting control element. Genes Dev. 11, 1596–1604 (1997).
    Article CAS Google Scholar
  19. Lyko, F., Brenton, J. D., Surani, M. A. & Paro, R. An imprinting element from the mouse H19 locus functions as a silencer in Drosophila. Nature Genet. 16, 171–173 (1997).
    Article CAS Google Scholar
  20. McCarrick, J. W. II, Parnes, J. R., Seong, R. H., Solter, D. & Knowles, B. B. Positive-negative selection gene targeting with the diphtheria toxin A-chain gene in mouse embryonic stem cells. Transgen. Res. 2, 183–190 (1993).
    Article CAS Google Scholar
  21. Johnson, K. A. et al. Transgenic mice for the preparation of hygromycin-resistant primary embryonic fibroblast feeder layers for embryonic stem cell selections. Nucleic Acids Res. 23, 1273–1275 (1995).
    Article CAS Google Scholar
  22. Ramirez-Solis, R. et al. Genomic DNA microextraction: a method to screen numerous samples. Anal. Biochem. 201, 331–335 (1992).
    Article CAS Google Scholar
  23. Feinberg, A. P. & Vogelstein, B. Atechnique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 137, 266–267 (1984).
    Article CAS Google Scholar
  24. Chu, G., Vollrath, D. & Davis, R. W. Separation of large DNA molecules by contour-clamped homogenous electric fields. Science 234, 1582–1585 (1986).
    Article ADS CAS Google Scholar
  25. Sauer, B. & Henderson, N. Targeted insertion of exogenous DNA into the eukaryotic genome by the re recombinase. New Biol. 2, 441–449 (1990).
    CAS PubMed Google Scholar
  26. Auffray, C. & Rougeon, F. Purification of mouse immunoglobulin heavy-chain messenger RNAs from total myeloma tumor RNA. Eur. J. Biochem. 107, 303–314 (1980).
    Article CAS Google Scholar
  27. Bartolomei, M. S., Zemel, S. & Tilghman, S. M. Parental imprinting of the mouse H19 gene. Nature 351, 153–155 (1991).
    Article ADS CAS Google Scholar
  28. Dudov, K. P. & Perry, R. P. The gene encoding the mouse ribosomal protein L32 contains a uniquely expressed intron containing gene and an unmutated processed gene. Cell 37, 457–468 (1984).
    Article CAS Google Scholar

Download references