Developmental regulation of NMDA receptor-mediated synaptic currents at a central synapse (original) (raw)

Nature volume 357, pages 686–689 (1992)Cite this article

Abstract

THE central nervous system has extraordinary plasticity in early life. This is thought to involve _N_-methyl-D-aspartate (NMDA) receptors1 which, along with the non-NMDA receptors, mediate fast excitatory synaptic transmission2. Although NMDA receptors may be transiently enhanced early in life3–6, it has not been possible to demonstrate directly a functional change in the NMDA receptor-mediated synaptic response because of the voltage-dependence of the NMDA conductance and the overlapping inhibitory synaptic conductances. Here I report that the duration of evoked NMDA-receptor-mediated excitatory postsynaptic currents (e.p.s.cs) in the superior colliculus is several times longer at early developmental stages compared to that measured in older animals. In contrast, the amplitude of NMDA-receptor-mediated miniature e.p.s.cs does not change during development. The kinetic response of excised membrane patches to a brief activation of NMDA receptors is similar to that of the NMDA e.p.s.c, which suggests that the time course of the NMDA e.p.s.c. in the superior colliculus reflects slow NMDA channel properties as in the hippocampus7–9. Therefore, these data indicate that the molecular properties of NMDA receptors are developmentally regulated and thus may be controlling the ability of synapses to change in early life.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Constantine-Paton, M., Cline, H. T. & Debski, E. A. Rev. Neurosci. 13, 129–154 (1990).
    Article CAS Google Scholar
  2. Collingridge, G. L. & Lester, R. A. J. Pharmacol. Rev. 40, 143–210 (1989).
    Google Scholar
  3. Tsumoto, T., Hagihara, K., Sato, H. & Hata, Y. Nature 327, 513–514 (1987).
    Article ADS CAS Google Scholar
  4. Fox, K., Daw, N., Sato, H. & Czepita, D. Nature 350, 342–344 (1991).
    Article ADS CAS Google Scholar
  5. Bode-Greuel, K. M. & Singer, W. Dev. Brain Res. 46, 197–204 (1989).
    Article CAS Google Scholar
  6. Kato, N., Artola, A., and Singer, W. Dev. Brain Res. 60, 43–50 (1991).
    Article CAS Google Scholar
  7. Hestrin, S., Sah, P. & Nicoll, R. A. Neuron 5, 247–253 (1990).
    Article CAS Google Scholar
  8. Lester, R. A., Clements, J. D., Westbrook, G. L. & Jahr, C. E. Nature 346, 565–567 (1990).
    Article ADS CAS Google Scholar
  9. Gibb, A. J. & Colquhoun, D. Proc. R. Soc. B243, 39–45 (1991).
    Article ADS CAS Google Scholar
  10. Lund, R. D. & Lund, J. S. Brain Res. 42, 1–20 (1972).
    Article CAS Google Scholar
  11. Miyamoto, T., Sakurai, T. & Okada, Y. Brain Res. 518, 166–172 (1990).
    Article CAS Google Scholar
  12. Hestrin, S., Nicoll, R. A., Perkel, D. J. & Sah, P. J. Physiol. 422, 203–225 (1990).
    Article CAS Google Scholar
  13. Nowak, L., Bregestovski, P., Ascher, P., Herbet, A. & Prochianz, A. Nature 307, 462–465 (1984).
    Article ADS CAS Google Scholar
  14. Mayer, M. L., Westbrook, G. L., & Guthrie, P. B. Nature 309, 261–263 (1984).
    Article ADS CAS Google Scholar
  15. Ben-Ari, Y., Cherubini, E. & Krnjevic, K. Neurosci. Lett. 94, 88–92 (1988).
    Article CAS Google Scholar
  16. Kleckner, N. W. & Dingledine, R. Molec. Brain Res. 11, 151–159 (1991).
    CAS PubMed Google Scholar
  17. Lo-Turco, J. J., Blanton, M. G. & Kriegstien, A. R. J. Neurosci. 11, 792–799 (1991).
    Article CAS Google Scholar
  18. Konnerth, A., Keller, B. U., Ballanyi, K. & Yaari, Y. Exp. Brain Res. 81, 209–212 (1990).
    Article CAS Google Scholar
  19. Sakmann, B. & Brenner, H. R. Nature 276, 401–402 (1978).
    Article ADS CAS Google Scholar
  20. Fischbach, G. D. & Schuetze, S. M. J. Physiol. 303, 125–137 (1980).
    Article CAS Google Scholar
  21. Mishina, M. et al. Nature 321, 406–411 (1986).
    Article ADS CAS Google Scholar
  22. Moriyoshi, K. et al. Nature 354, 31–37 (1991).
    Article ADS CAS Google Scholar
  23. Coleman, P. A. & Miller, R. F. J. Neurophysiol. 61, 218–230 (1989).
    Article CAS Google Scholar
  24. Edwards, F. A., Konnerth, A., Sakmann, B. & Takahashi, T. Pflugers Archs 414, 600–612 (1989).
    Article CAS Google Scholar
  25. Blanton, M. G., Lo-Turco, J. L. & Kriegstein, A. R. J. Neurosci. Meth. 30, 203–210 (1989).
    Article CAS Google Scholar
  26. Trussell, L. O. & Fischbach, G. D. Neuron 3, 209–350 (1989).
    Article CAS Google Scholar

Download references

Author information

Authors and Affiliations

  1. Department of Physiology, University of California School of Medicine, Box 0444, San Francisco, California, 94143, USA
    Shaul Hestrin

Authors

  1. Shaul Hestrin
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Hestrin, S. Developmental regulation of NMDA receptor-mediated synaptic currents at a central synapse.Nature 357, 686–689 (1992). https://doi.org/10.1038/357686a0

Download citation

This article is cited by