A role for ADP-ribosylation factor in nuclear vesicle dynamics (original) (raw)

Nature volume 358, pages 512–514 (1992)Cite this article

Abstract

Two distinct steps in nuclear envelope assembly can be assayed in vitro1–3: the protein-mediated binding4 of nuclear-specific vesicles to chromatin, and the subsequent fusion5 of these vesicles to enclose the chromatin within a double nuclear membrane. Nuclear vesicle fusion, like fusion in the secretory pathway6,7, requires ATP8,9 and cytosol1,3,5 and is inhibited by nonhydrolysable GTP analogues1,2. The sensitivity of nuclear vesicle fusion to GTP-_γ_S requires a GTP-dependent soluble factor, the properties of which are strikingly similar to a GTP-dependent Golgi binding factor (GGBF) that inhibits Golgi vesicle fusion in the presence of GTP-γS and belongs to the ADP-ribosylation factor (ARF) family of small GTPases10,11. In the presence of GTP-_γ_S, ARF proteins and _α_-, _β_-, _γ_-, _δ_-COP (‘coatomer’) subunits are associated with Golgi transport vesicles6,12,13, but the exact roles of ARF proteins in secretion are not yet understood. We report here that purified ARF1 and GGBF have GTP-dependent soluble factor activity in the nuclear vesicle fusion assay. Our results show that the function of ARF is not limited to the Golgi apparatus, and indicate that there may be a link between the formation of nuclear vesicles during mitosis and proteins involved in secretion.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Boman, A. L., Delannoy, M. D. & Wilson, K. L. J. Cell Biol. 116, 281–294 (1992).
    Article CAS Google Scholar
  2. Newport, J. & Dunphy, W. J. Cell Biol. 116, 295–306 (1992).
    Article CAS Google Scholar
  3. Pfaller, R., Smythe, C. & Newport, J. Cell 65, 209–217 (1991).
    Article CAS Google Scholar
  4. Wilson, K. L. & Newport, J. J. Cell Biol. 107, 57–68 (1988).
    Article CAS Google Scholar
  5. Lohka, M. J. & Masui, Y. J. Cell Biol. 98, 1222–1230 (1984).
    Article CAS Google Scholar
  6. Rothman, J. E. & Orci, L. Nature 355, 409–415 (1992).
    Article ADS CAS Google Scholar
  7. Melançon, P. et al. Cell 51, 1053–1062 (1987).
    Article Google Scholar
  8. Newmeyer, D. D., Lucocq, J. M., Bürglin, T. R. & DeRobertis, E. M. EMBO J. 5, 501–510 (1986).
    Article CAS Google Scholar
  9. Vigers, G. P. A. & Lohka, M. J. J. Cell Biol. 112, 545–554 (1991).
    Article CAS Google Scholar
  10. Taylor, T. C., Kahn, R. A. & Melançon, P. Cell 70, 69–80 (1992).
    Article CAS Google Scholar
  11. Kahn, R. A., Kern, R. G., Clark, J., Gelmann, E. P. & Rulka, C. J. biol. Chem. 266, 2606–2614 (1991).
    CAS PubMed Google Scholar
  12. Serafini, T. et al. Cell 67, 239–253 (1991).
    Article CAS Google Scholar
  13. Stearns, T., Willingham, M. C., Botstein, D. & Kahn, R. A. Proc. natn. Acad. Sci. U.S.A. 87, 1238–1242 (1990).
    Article ADS CAS Google Scholar
  14. Weiss, O., Holden, J., Rulka, C. & Kahn, R. A. J. biol. Chem. 264, 21066–21072 (1989).
    CAS PubMed Google Scholar
  15. Kahn, R. A. J. biol. Chem. 266, 15595–15597 (1991).
    CAS PubMed Google Scholar
  16. Schleifer, L. S. et al. J. biol. Chem. 257, 20–23 (1982).
    CAS PubMed Google Scholar
  17. Orci, L. et al. Cell 64, 1183–1195 (1991).
    Article CAS Google Scholar
  18. Donaldson, J. G., Lippincott-Schwartz, J. & Klausner, R. D. J. Cell Biol. 112, 579–588 (1991).
    Article CAS Google Scholar
  19. Pelham, H. R. B. Cell 67, 449–451 (1991).
    Article CAS Google Scholar
  20. Kahn, R. A. et al. J. biol. Chem. 267, 13039–13046 (1992).
    CAS PubMed Google Scholar
  21. Balch, W. E., Kahn, R. A. & Schwaninger, R. J. biol. Chem. 267, 13053–13061 (1992).
    CAS PubMed Google Scholar
  22. Lenhard, J. M., Kahn, R. A. & Stahl, P. D. J. biol. Chem. 267, 13047–13052 (1992).
    CAS PubMed Google Scholar
  23. Donaldson, J. G., Cassel, D., Kahn, R. A. & Klausner, R. D. Proc. natn. Acad. Sci. U.S.A. (in the press).
  24. Ercolani, L. et al. Proc. natn. Acad. Sci. U.S.A. 87, 4637–4639 (1990).
    Article ADS Google Scholar
  25. Donaldson, J. G., Kahn, R. A., Lippincott-Schwartz, J. & Klausner, R. D. Science 254, 1197–1199 (1991).
    Article ADS CAS Google Scholar
  26. Beckers, C. J. M. & Balch, W. E. J. Cell Biol. 108, 1245–1256 (1989).
    Article CAS Google Scholar
  27. Mayorga, L. S., Diaz, R. & Stahl, P. D. Science 244, 1475–1477 (1989).
    Article ADS CAS Google Scholar
  28. Warren, G. Trends Biochem. Sci. 10, 439–443 (1985).
    Article CAS Google Scholar
  29. Mellman, I. & Simons, K. Cell 68, 829–840 (1992).
    Article CAS Google Scholar
  30. Lohka, M. J. & Masui, Y. Science 220, 719–721 (1983).
    Article ADS CAS Google Scholar

Download references

Author information

Authors and Affiliations

  1. Department of Cell Biology and Anatomy, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland, 21205, USA
    Annette L. Boman, Timothy C. Taylor, Paul Melançon & Katherine L. Wilson
  2. Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado, 80309, USA
    Timothy C. Taylor & Paul Melançon

Authors

  1. Annette L. Boman
    You can also search for this author inPubMed Google Scholar
  2. Timothy C. Taylor
    You can also search for this author inPubMed Google Scholar
  3. Paul Melançon
    You can also search for this author inPubMed Google Scholar
  4. Katherine L. Wilson
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Boman, A., Taylor, T., Melançon, P. et al. A role for ADP-ribosylation factor in nuclear vesicle dynamics.Nature 358, 512–514 (1992). https://doi.org/10.1038/358512a0

Download citation

This article is cited by