Myc and Max proteins possess distinct transcriptional activities (original) (raw)

Nature volume 359, pages 426–429 (1992)Cite this article

Abstract

THE Myc family proteins are thought to be involved in transcription1,2 because they have both a carboxy-terminal basic–helix–loop–helix–zipper (bHLH-Z) domain, common to a large class of transcription factors3, and an amino-terminal fragment which, for c-Myc, has transactivating function when assayed in chimaeric constructs4. In addition, c-, N- and L-Myc proteins heterodimerize, in vitro and in vivo, with the bHLH-Z protein Max5–8. In vitro, Max homodimerizes but preferentially associates with Myc, which homodimerizes poorly5,6. Furthermore Myc-Max heterodimers specifically bind the nucleotide sequence CACGTG9 with higher affinity than either homodimer alone5. The identification of Max and the specific DNA-binding activities of Myc and Max provides an opportunity for directly testing the transcriptional activities of these proteins in mammalian cells. We report here that Myc overexpression activates, whereas Max overexpression represses, transcription of a reporter gene. Max-induced repression is relieved by overexpression of c-Myc. Repression requires the DNA-binding domain of Max, whereas relief of repression requires the dimerization and transcriptional activation activities of Myc. Both effects require Myc–Max-binding sites in the reporter gene.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Kingston, R. E., Baldwin, A. S. & Sharp, P. A. Cell 41, 3–5 (1985).
    Article CAS Google Scholar
  2. Kaddurah-Daouk, R., Greene, J. M., Baldwin, A. S. & Kingston, R. E. Genes Dev. 1, 347–357 (1987).
    Article CAS Google Scholar
  3. Jones, N. Cell 61, 9–11 (1990).
    Article CAS Google Scholar
  4. Kato, G. J., Barrett, J., Villa-Garcia, M. & Dang, C. V. Molec. cell Biol. 10, 5914–5920 (1990).
    Article CAS Google Scholar
  5. Blackwood, E. M. & Eisenman, R. N. Science 251, 1211–1217 (1991).
    Article ADS CAS Google Scholar
  6. Prendergast, G. C., Lawe, D. & Ziff, E. B. Cell 85, 395–407 (1991).
    Article Google Scholar
  7. Blackwood, E. M., Lüscher, B. & Eisenman, R. N. Genes Dev. 6, 71–80 (1992).
    Article CAS Google Scholar
  8. Wenzel, A., Cziepluch, C., Hamann, U., Schümann, J. & Schwab, M. EMBO J. 10, 3703–3712 (1991).
    Article CAS Google Scholar
  9. Blackwell, T. K., Kretzner, L., Blackwood, E. M., Eisenman, R. N. & Weintraub, H. Science 250, 1149–1151 (1990).
    Article ADS CAS Google Scholar
  10. Hann, S. R., Thompson, C. B. & Eisenman, R. N. Nature 314, 366–369 (1985).
    Article ADS CAS Google Scholar
  11. Gregor, P. D., Sawadogo, M. & Roeder, R. G. Genes Dev. 4, 1730–1740 (1990).
    Article CAS Google Scholar
  12. Beckman, H., Su, L.-K. & Kadesch, T. Genes Dev. 4, 167–179 (1990).
    Article Google Scholar
  13. Chiu, R. et al. Cell 54, 541–552 (1988).
    Article CAS Google Scholar
  14. Boyle, W. J. et al. Cell 64, 573–584 (1991).
    Article CAS Google Scholar
  15. Kato, G. J., Lee, W. M. F., Chen, L. & Dang, C. V. Genes Dev. 6, 81–92 (1992).
    Article CAS Google Scholar
  16. Hann, S. R. & Eisenman, R. N. Molec. cell. Biol. 4, 2486–2497 (1984).
    Article CAS Google Scholar
  17. Waters, C.M., Littlewood, T. D., Hancock, D. C., Moore, J. P. & Evan, G. I. Oncogene 6, 797–805 (1991).
    CAS PubMed Google Scholar
  18. Kelly, K., Cochran, B. H., Stiles, C. D. & Leder, P. Cell 35, 603–610 (1983).
    Article CAS Google Scholar
  19. Dean, M. et al. J. biol. Chem. 261, 9161–9166 (1986).
    CAS PubMed Google Scholar
  20. Ptashne, M. Nature 335, 683–689 (1988).
    Article ADS CAS Google Scholar
  21. Rustgi, A. K., Dyson, N. & Bernards, R. Nature 352, 541–544 (1991).
    Article ADS CAS Google Scholar
  22. Harland, R. & Weintraub, H. J. cell. Biol. 101, 1094–1099 (1985).
    Article CAS Google Scholar
  23. Gorman, C. M., Moffat, L. F. & Howard, B. H. Molec. cell. Biol. 2, 1044–1051 (1982).
    Article CAS Google Scholar
  24. Halazonetis, T. D. & Kandil, A. N. Proc. natn. Acad. Sci. U.S.A. 88, 6162–6166 (1991).
    Article ADS CAS Google Scholar
  25. Nyborg, J. K. et al. J. biol. Chem. 265, 8237–8242 (1990).
    CAS PubMed Google Scholar
  26. Geballe, A. P. & Mocarski, E. S. J. Virol. 62, 3334–3340 (1988).
    CAS PubMed PubMed Central Google Scholar
  27. Berberich, S. J. & Cole, M. D. Genes Dev. 6, 166–176 (1992).
    Article CAS Google Scholar

Download references

Author information

Authors and Affiliations

  1. Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1124 Columbia Street, Seattle, Washington, 98104, USA
    Leo Kretzner & Robert N. Eisenman
  2. Department of Pathology, School of Medicine, University of Washington, Seattle, Washington, 98195, USA
    Elizabeth M. Blackwood

Authors

  1. Leo Kretzner
    You can also search for this author inPubMed Google Scholar
  2. Elizabeth M. Blackwood
    You can also search for this author inPubMed Google Scholar
  3. Robert N. Eisenman
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Kretzner, L., Blackwood, E. & Eisenman, R. Myc and Max proteins possess distinct transcriptional activities.Nature 359, 426–429 (1992). https://doi.org/10.1038/359426a0

Download citation