Three-dimensional cryo-electron microscopy of the calcium ion pump in the sarcoplasmic reticulum membrane (original) (raw)

Nature volume 362, pages 469–471 (1993)Cite this article

An Erratum to this article was published on 20 May 1993

Abstract

THE ATP-driven calcium pump (Ca2+-ATPase) is an integral membrane protein (_M_r 11 OK) which relaxes striated muscle by pumping calcium out of the cytoplasm into the sarcoplasmic reticulum against a large concentration gradient1. Recent efforts have attempted to relate the sequence of Ca2+-ATPase to its structure and function. In particular, site-directed mutagenesis has identified critical amino-acid residues2–6, and its predicted secondary structure, which includes ten transmembrane helices7, has gained experimental support8–10. But direct visualization of the molecule has so far been limited to the cytoplasmic domains at low resolution11, 12. We present here the three-dimensional structure of Ca2+-ATPase in the native sarcoplasmic reticulum membrane at 14 Å resolution, determined by cryo-electron microscopy and helical image analysis. The structure shows an unexpected transmembrane organization, consisting of three distinct segments, one of which is highly inclined. These features can be related to earlier predictions of secondary structure.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Inesi, G., Lewis, D., Nikic, D., Hussain, A. & Kirtley, M. E. Adv. Enzym. 65, 185–215 (1992).
    CAS Google Scholar
  2. Clarke, D. M., Loo, T. W. & MacLennan, D. H. J. biol. Chem. 265, 22223–22227 (1990).
    CAS PubMed Google Scholar
  3. Clarke, D. M., Loo, T. W. & MacLennan, D. H. J. biol. Chem. 265, 6262–6267 (1990).
    CAS PubMed Google Scholar
  4. Clarke, D. M. et al. J. biol. Chem. 264, 11246–11251 (1989).
    CAS PubMed Google Scholar
  5. Vilsen, B., Andersen, J. P., Clarke, D. M. & MacLennan, D. H. J. biol. Chem. 264, 21024–21030 (1989).
    CAS PubMed Google Scholar
  6. Andersen, J. P., Vilsen, B., Leberer, E. & MacLennan, D. H. J. biol. Chem. 264, 21018–21023 (1989).
    CAS PubMed Google Scholar
  7. MacLennan, D. H., Brandl, C. J., Korczak, B. & Green, N. M. Nature 316, 696–700 (1985).
    Article ADS CAS Google Scholar
  8. Matthews, I., Sharma, R. P., Lee, A. G. & East, J. M. J. biol. Chem. 265, 18737–18740 (1990).
    CAS PubMed Google Scholar
  9. Clarke, D. M., Loo, T. W. & MacLennan, D. H. J. biol. Chem. 265, 17405–17408 (1990).
    CAS PubMed Google Scholar
  10. Sachs, G. et al. J. Bioenerg. Biomembr. 24, 301–308 (1992).
    CAS PubMed Google Scholar
  11. Taylor, K. A., Dux, L. & Martonosi, A. J. molec. Biol. 187, 417–427 (1986).
    Article CAS Google Scholar
  12. Castellani, L., Hardwlcke, P. M. & Vibert, P. J. molec. Biol. 185, 579–594 (1985).
    Article CAS Google Scholar
  13. Dux, L. & Martonosi, A. J. biol. Chem. 258, 2599–2603 (1983).
    CAS PubMed Google Scholar
  14. Toyoshima, C. & Unwin, N. J. Cell Biol. 111, 2623–2635 (1990).
    Article CAS Google Scholar
  15. Herbette, L. et al. Biochim. biophys. Acta 817, 103–122 (1985).
    Article CAS Google Scholar
  16. Dupont, Y., Harrison, S. C. & Hasselbach, W. nature 244, 555–558 (1973).
    Article ADS CAS Google Scholar
  17. Brandl, C. J., Green, N. M., Korczak, B. & MacLennan, D. H. Cell 44, 597–607 (1986).
    Article CAS Google Scholar
  18. Green, N. M. Biochem. Soc. Trans. 17, 970–972 (1989).
    CAS Google Scholar
  19. Clarke, D. M., Loo, T. W., Inesi, G. & MacLennan, D. H. Nature 339, 476–478 (1989).
    Article ADS CAS Google Scholar
  20. Green, N. M. & Stokes, D. L. Acta Physiol. scand. 146, 59–68 (1992).
    CAS Google Scholar
  21. Meissner, G., Conner, G. E. & Fleischer, S. Biochim. biophys. Acta 298, 246–269 (1973).
    Article CAS Google Scholar
  22. Toyoshima, C. Ultramicroscopy 30, 439–444 (1989).
    Article Google Scholar

Download references

Author information

Author notes

  1. David L. Stokes: To whom correspondence should be addressed.

Authors and Affiliations

  1. Department of Biological Sciences, Tokyo Institute of Technology, Meguro-ku, Ookayama, Tokyo, 152, Japan
    Chikashi Toyoshima
  2. Research Program, RIKEN, Wako, Saitama, 351-01, Japan
    Chikashi Toyoshima & Hiroyuki Sasabe
  3. University of Virginia Health Sciences Center, Department of Molecular Physiology and Biological Physics, Jordan Hall, Box 449, Charlottesville, Virginia, 22908, USA
    David L. Stokes

Authors

  1. Chikashi Toyoshima
    You can also search for this author inPubMed Google Scholar
  2. Hiroyuki Sasabe
    You can also search for this author inPubMed Google Scholar
  3. David L. Stokes
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Toyoshima, C., Sasabe, H. & Stokes, D. Three-dimensional cryo-electron microscopy of the calcium ion pump in the sarcoplasmic reticulum membrane.Nature 362, 469–471 (1993). https://doi.org/10.1038/362469a0

Download citation

This article is cited by