Selective attention enhances the auditory 40-Hz transient response in humans (original) (raw)

Nature volume 364, pages 59–60 (1993)Cite this article

Abstract

STUDIES of human auditory1–3 and somatosensory3 modalities have shown that there is an oscillatory response in the γ-band (at about 40 Hz) frequency which is elicited by either steady state1–3 or transient4 stimulation. The auditory 40-Hz response is generated at least partially in the auditory cortex4,5as a result of thalamocortical interaction6 and may serve perceptual integration7,8 and conscious perception9. A connection to selective attention has been implied in human10 and animal11 studies, although the evidence is inconclusive12. Moreover, fundamental differences between the human and animal 40-Hz responses13 prohibit generalization. Furthermore, most experiments have used steady-state stimulation during which the brain does not regain its resting state between stimuli as it does when transient stimulation is used14. Here we study the effect of selective attention on the auditory γ-band (40-Hz) transient response using subjects listening to tone pips presented in one ear while ignoring a concurrent sequence of tone pips in the other ear. The 40-Hz response was larger when subjects paid attention to stimuli rather than ignored them. This attention effect was most pronounced over the frontal and central scalp areas. Our results demonstrate a physiological correlate of selective attention in the 40-Hz transient response in humans.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Galambos, R., Makeig, S. & Talmachoff, P. J. Proc. natn. Acad. Sci, U.S.A. 78, 2643–2647 (1981).
    Article ADS CAS Google Scholar
  2. Makeig, S. & Galambos, R. Soc. Neurosci. Abstr. 15, 113 (1989).
    Google Scholar
  3. Galambos, R. Ann. N.Y. Acad. Sci. U.S.A. 388, 722–728 (1982).
    Article ADS CAS Google Scholar
  4. Pantev, C. et al. Proc. natn. Acad. Sci. U.S.A. 88, 8996–9000 (1991).
    Article ADS CAS Google Scholar
  5. Mäkelä, J. P. & Hari, R. Electroenceph. clin. Neurophys. 66, 539–546 (1987).
    Article Google Scholar
  6. Ribary, U. et al. Proc. natn. Acad. Sci. U.S.A. 88, 11037–11041 (1991).
    Article ADS CAS Google Scholar
  7. Gray, C. M. et al. Nature 338, 334–337 (1989).
    Article ADS CAS Google Scholar
  8. Engel, A. K. et al. Trends Neurosci. 15, 218–226 (1992).
    Article CAS Google Scholar
  9. Llinás, R. & Pare, D. Neuroscience 44, 521–535 (1991).
    Article Google Scholar
  10. Sheer, D. E. In Self-regulation of the Brain and Behaviour (eds Elbert, T., Rockstroh, B., Lutzenberger, W. & Birbaumer, N., 64–84 (Springer, Berlin, 1984).
    Book Google Scholar
  11. Rougeul, A. et al. Electroenceph. clin. Neurophys. 46, 310–319 (1979).
    Article CAS Google Scholar
  12. Linden, R. D. et al. Electroenceph. clin. Neurophys. 66, 145–159 (1987).
    Article CAS Google Scholar
  13. Galambos, R. in Induced Rhythms in the Brain, (eds Bullock, T. H. & Başar, E., 201–216 Birkhäuser, Boston, 1991).
    Google Scholar
  14. Kaufman, L. & Williamson, S. J. in Auditory Evoked Magnetic Fields and Electric Potentials (eds Grandori, F., Hoke, M. & Romani, G. L.) 283–312 (Karger, Basel. 1990).
    Google Scholar
  15. Daubechies, I. IEEE Transactions on Information Theory 36, 961–1005 (1990).
    Article ADS MathSciNet Google Scholar
  16. Gabor, D. Proc. IEE 93, 429–457 (1946).
    Google Scholar
  17. Harter, M. R. & Aine, C. J. in Varieties of Attention (eds Parasuraman, R. & Davies, D. R. Academic, London (1984).
    Google Scholar
  18. Skinner, J. E. & Yingling, C. D. Progr. clin. Neurophys. 1, 30–69 (1977).
    Google Scholar
  19. Hillyard, S. A. & Mangun, G. R. in Current Trends in Event-Related Potential Research EEG suppl. 40. (eds Johnson, R., Parasuraman, R. & Rohrbaugh, J. W.) 61–67 (Elsevier, Amsterdam 1984).
    Google Scholar
  20. Oatman, L. Exp. Neurol. 32, 341–356 (1971).
    Article CAS Google Scholar
  21. Ribary, U. et al. Eur. J. Neurosci. Suppl. 1, 44.17 (1988).
    Google Scholar
  22. Ribary, U. et al. in Advances in Biomagnetism (eds Williamson, S., Hoke, M., Stroink. G. & Kotani, M.) 311–314 (Plenum, New York, 1989).
    Book Google Scholar

Download references

Author information

Authors and Affiliations

  1. Cognitive Psychophysiology Research Unit, Department of Psychology, University of Helsinki, Ritarikatu 5, SF-00170, Helsinki, Finland
    H. T. Tiitinen, J. Sinkkonen, K. Reinikainen, K. Alho, J. Lavikainen & R. Näätänen

Authors

  1. H. T. Tiitinen
    You can also search for this author inPubMed Google Scholar
  2. J. Sinkkonen
    You can also search for this author inPubMed Google Scholar
  3. K. Reinikainen
    You can also search for this author inPubMed Google Scholar
  4. K. Alho
    You can also search for this author inPubMed Google Scholar
  5. J. Lavikainen
    You can also search for this author inPubMed Google Scholar
  6. R. Näätänen
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Tiitinen, H., Sinkkonen, J., Reinikainen, K. et al. Selective attention enhances the auditory 40-Hz transient response in humans.Nature 364, 59–60 (1993). https://doi.org/10.1038/364059a0

Download citation

This article is cited by