A non-retroviral RNA virus persists in DNA form (original) (raw)

References

  1. Lau, L. L., Jamieson, B. D., Somasundaram, T. & Ahmed, R. Cytotoxic T-cell memory without antigen. Nature 369, 648–652 (1994).
    Article ADS CAS Google Scholar
  2. Slifka, M., Matloubian, M. & Ahmed, R. Bone Marrow is a major site of long-term antibody production after acute viral infection. J. Virol. 69, 1895–1902 (1995).
    CAS PubMed PubMed Central Google Scholar
  3. Zinkernagel, R. M. et al. On immunological memory. A. Rev. Immunol. 14, 333–368 (1996).
    Article CAS Google Scholar
  4. Kundig, T. et al. On the role of antigen in maintaining CTL memory. Proc. Natl Acad. Sci. USA 93, 9716–8723 (1996).
    Article ADS CAS Google Scholar
  5. Ahmed, R. & Gray, D. Immunological memory and protective immunity: understanding their relation. Science 272, 54–60 (1996).
    Article ADS CAS Google Scholar
  6. Battegay, M. et al. Quantification of LCMV with immunological focus assay in 24 or 96 well plates. J. Virol. Methods 33, 191–198 (1991).
    Article CAS Google Scholar
  7. Pircher, H. et al. Viral escape by selection of cytotoxic T cell-resistant variants in vivo. Nature 346, 629–233 (1990).
    Article ADS CAS Google Scholar
  8. Kagi, D. et al. Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 369, 31–37 (1994).
    Article ADS CAS Google Scholar
  9. Smith, M., Brian, E. L. & Pagano, J. Resumption of virus production after HIV infection of T lymphocytes in the presence of AZT. J. Virol. 61, 3769–3773 (1987).
    CAS PubMed PubMed Central Google Scholar
  10. Rawls, W., Banerjee, S., McMillan, C. & Buchmeier, M. Inhibition of Pichinde virus replication by Actinomycin D. J. Gen. Virol. 33, 421–434 (1976).
    Article CAS Google Scholar
  11. Planz, O., Seiler, P., Hengartner, H. & Zinkernagel, R. Specific CTL eliminate cells producing neutralizing antibodies. Nature 382, 726–730 (1996).
    Article ADS CAS Google Scholar
  12. Lehmann-Grube, F. Lymphocytic choriomeningitis virus. Virol. Monogr. 10, 28–106 (1971).
    Google Scholar
  13. Pyra, H., Boeni, J. & Schupbach, J. Ultrasensitive retrovirus detection by a RT assay based on product enhancement. Proc. Natl Acad. Sci. USA 51, 1544–1548 (1994).
    Article ADS Google Scholar
  14. Oxenius, A. et al. Presentation of endogenous viral proteins in association with MHC Class II. Eur. J. Immunol. 25, 3402–3411 (1995).
    Article CAS Google Scholar
  15. Oldstone, M. & Buchmeier, M. Restricted expression of viral glycoprotein in cells of persistently infected mice. Nature 300, 360–362 (1982).
    Article ADS CAS Google Scholar
  16. Lehmann-Grube, F. Acarrier state of LCMV in L cell cultures. Nature 213, 770–773 (1967).
    Article ADS CAS Google Scholar
  17. Moskophidis, D. & Zinkernagel, R. M. Immunobiology of cytotoxic T-cell escape mutants of lymphocytic choriomeningitis virus. J. Virol. 69, 2187–2193 (1995).
    CAS PubMed PubMed Central Google Scholar
  18. Salvato, M. in The Arenaviridae(ed. Salvato, M.) 133–156 (Plenum, New York, (1993)).
    Google Scholar
  19. Heidmann, O. & Heidmann, T. Retrotransposition of a mouse IAP sequence tagged with an indicator gene. Cell 64, 159–170 (1991).
    Article CAS Google Scholar
  20. Zhdanov, V. Integration of viral genomes. Nature 256, 471–473 (1975).
    Article ADS CAS Google Scholar
  21. Wiener, A., Deininger, P. & Efstratiadis, A. Nonretroviral transposons: Genes, pseudogenes and transposable elements generated by reverse flow of genetic information. A. Rev. Biochem. 55, 631–661 (1986).
    Article Google Scholar
  22. Coffin, J. in Reverse Transcriptase(eds Skalka, A. & Gough, S.) 445–479 (Cold Spring Harbour Laboratory Press, New York, (1993)).
    Google Scholar
  23. Oldstone, M. & Dixon, F. Activation of murine leukaemia virus related antigen by LCMV. Science 174, 843–845 (1971).
    Article ADS CAS Google Scholar
  24. Pease, L. & Murphy, W. Co-infection by LDV and C type retrovirus elicits neurological disease. Nature 286, 398–400 (1980).
    Article ADS CAS Google Scholar
  25. Planz, O. et al. Acritical role for neutralizing-antibody-producing B cells, CD4+ T cells, and interferons in persistent and acute infections of mice with LCMV: implications for adoptive immunotherapy of virus carriers. Proc. Natl Acad. Sci. USA 94, 6874–6879 (1997).
    Article ADS CAS Google Scholar
  26. Loewer, R., Loewer, J. & Kurth, R. The viruses in all of us: Characteristics and biological significance of human endogenous retrovirus sequences. Proc. Natl Acad. Sci. USA 93, 5177–5184 (1996).
    Article ADS CAS Google Scholar
  27. Yokoyama, M., Zhang, J. & Whitton, J. DNA immunization confers protection against lethal LCMV. J. Virol. 69, 2684–2688 (1995).
    CAS PubMed PubMed Central Google Scholar
  28. Skyulev, Y., Joo, M., Vturina, I., Tsomides, T. & Eisen, H. Evidence that a single peptide-MHC complex on a target cell can elicit a CTL response. Immunity 4, 565–571 (1996).
    Article Google Scholar
  29. Romanowski, V., Matsuura, Y. & Bishop, D. Complete sequence of the S RNA of LCMV (WE) compared to that of Pichinde. Virus Res. 3, 101–108 (1985).
    Article CAS Google Scholar
  30. Silver, J., Maudru, T., Fujita, K. & Repaske, R. An RT-PCR assay for the enzyme activity of reverse transcriptase capable of detecting single virions. Nucleic Acids Res. 21, 3593–3594 (1993).
    Article CAS Google Scholar

Download references