Implications for bcd mRNA localization from spatial distribution of exu protein in Drosophila oogenesis (original) (raw)

Nature volume 369, pages 400–403 (1994)Cite this article

Abstract

SUBCELLULAR RNA localization in different cell types leads to asymmetric distribution of proteins in these cells1,2. The localization of bicoid (bcd) messenger RNA to the anterior pole of the developing Drosophila oocyte gives rise in embryogenesis to a steep concentration gradient of the bcd protein3–6, a transcription factor that activates expression of zygotic genes needed for anterior development7–9. The exuperantia (exu) gene is necessary for this localization of bcd mRNA3,4. Here we express a chimaeric gene encoding a fusion between the Acquorea Victoria green fluorescent protein (GFP) 10 and the exu protein (Exu) in female germ cells, and find that the fusion protein fluoresces strongly in both live and fixed cells during Drosophila oogenesis. The fusion protein rescues an exu null allele, restoring full fertility to females, and is expressed and localized in a temporal and spatial pattern similar to native Exu. The high sensitivity of the GFP tag provides important new details on the subcellular localization of Exu. The fusion protein is found in particles concentrated at ring canals, where transport occurs between nurse cells and the oocyte. Drugs such as colchicine and taxol that affect microtubule stability alter localization of the particles. We propose that the particles are ribo-nucleoprotein complexes or vesicles which transport bcd mRNA along microtubules and target it to the anterior oocyte cortex.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Singer, R. H. Curr. Biol. 4, 15–19 (1992).
    Article CAS Google Scholar
  2. Wilhelm, J. E. & Vale, R. D. J. Cell Biol. 123, 269–274 (1993).
    Article CAS Google Scholar
  3. Berleth, T. et al. EMBO J. 7, 1749–1756 (1988).
    Article CAS Google Scholar
  4. St Johnston, D., Driever, W., Berleth, T., Richstein, S. & Nusslein-Volhard, C. Development 107 suppl., 13–19 (1989).
    CAS PubMed Google Scholar
  5. Frigerio, G., Burri, M., Bopp, D., Baumgartner, S. & Noll, M. Cell 47, 735–746 (1986).
    Article CAS Google Scholar
  6. Driever, W. & Nusslein-Volhard, C. Cell 54, 83–93 (1988).
    Article CAS Google Scholar
  7. Schroder, C., Tautz, D., Seifert, E. & Jackle, H. EMBO J. 7, 2881–2887 (1988).
    Article CAS Google Scholar
  8. Struhl, G., Struhl, K. & Macdonald, P. M. Cell 57, 1259–1273 (1989).
    Article CAS Google Scholar
  9. Driever, W., Thomas, G. & Nusslein-Volhard, C. Nature 340, 363–367 (1989).
    Article ADS CAS Google Scholar
  10. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W. & Prasher, D. C. Science 263, 802–805 (1994).
    Article ADS CAS Google Scholar
  11. Pokrywka, N. J. & Stephenson, E. C. Development 113, 55–66 (1991).
    CAS PubMed Google Scholar
  12. Macdonald, P. M., Luk, S. K. & Kilpatrick, M. Genes Dev. 5, 2455–2466 (1991).
    Article CAS Google Scholar
  13. Marcey, D., Watkins, W. S. & Hazelrigg, T. EMBO J. 10, 4259–4266 (1991).
    Article CAS Google Scholar
  14. Schüpbach, T. & Wieschaus, E. Wilhelm Roux Arch. dev. Biol. 195, 302–317 (1986).
    Article Google Scholar
  15. Warn, R. M., Gutzeit, H. O., Smith, L. & Warn, A. Expl Cell Res. 157, 355–363 (1986).
    Article Google Scholar
  16. Spradling, A. C. The Development of Drosophila melanogaster 1–70 (Cold Spring Harbor Press, New York, 1993).
    Google Scholar
  17. Theurkauf, W. E., Smiley, S., Wong, M. L. & Alberts, B. M. Development 115, 923–936 (1992).
    CAS PubMed Google Scholar
  18. Gutzeit, H. Wilhelm Roux Arch. dev. Biol. 195, 173–181 (1986).
    Article Google Scholar
  19. Theurkauf, W. E., Alberts, B. M., Jan, Y. N. & Jongens, T. A. Development 118, 1169–1180 (1993).
    CAS PubMed Google Scholar
  20. Ainger, K. et al. J. Cell Biol. 123, 431–441 (1993).
    Article CAS Google Scholar
  21. Prasher, D. C., Eckenrode, V. K., Ward, W. W., Prendergast, F. G. & Cormier, M. J. Gene 111, 229–233 (1992).
    Article CAS Google Scholar
  22. Sanger, F., Brownlee, G. G. & Barrell, B. G. Proc. natn. Acad. Sci. U.S.A. 71, 5463–5467 (1977).
    Article Google Scholar
  23. Thummel, C. & Pirrotta, V. Drosophila Information Service 71, 150 (1992).
    Google Scholar
  24. Rubin, G. & Spradling, A. Science 218, 348–353 (1982).
    Article ADS CAS Google Scholar
  25. Karess, R. & Rubin, G. Cell 38, 135–146 (1984).
    Article CAS Google Scholar

Download references

Author information

Author notes

  1. Tulle Hazelrigg: To whom correspondence should be addressed.

Authors and Affiliations

  1. Department of Biological Sciences, Columbia University, 602 Fairchild, New York, New York, 10027, USA
    Shengxian Wang & Tulle Hazelrigg

Authors

  1. Shengxian Wang
    You can also search for this author inPubMed Google Scholar
  2. Tulle Hazelrigg
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Wang, S., Hazelrigg, T. Implications for bcd mRNA localization from spatial distribution of exu protein in Drosophila oogenesis.Nature 369, 400–403 (1994). https://doi.org/10.1038/369400a0

Download citation

This article is cited by