RAD25 is a DMA helicase required for DNA repair and RNA polymerase II transcription (original) (raw)

Nature volume 369, pages 578–581 (1994)Cite this article

Abstract

THE RAD25 gene of Saccharomyces cerevisiae functions in nucleotide excision repair of ultraviolet-damaged DNA and is also required for cell viability1. The RAD25 protein shows remarkable homology to the protein encoded by the human nucleotide-excision-repair gene XPB (ERCC3), mutations in which cause the cancer-prone disease xeroderma pigmentosum and also Cockayne's syndrome1. Here we purify RAD25 protein from S. cerevisiae and show that it contains single-stranded DNA-dependent ATPase and DNA helicase activities. Extract from the conditional lethal mutant _rad25-ts_24 exhibits a thermolabile transcriptional defect which can be corrected by the addition of RAD25 protein, indicating a direct and essential role of RAD25 in RNA polymerase II transcription. The protein encoded by the _rad25_799am allele is defective in DNA repair but is proficient in RNA polymerase II transcription, indicating that RAD25 DNA-repair activity is separable from its transcription function. The rad25 Arg-392 encoded product, which contains a mutation in the ATP-binding motif, is defective in RNA polymerase II transcription, suggesting that the _RAD25_-encoded DNA helicase functions in DNA duplex opening during transcription initiation.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Prakash, S., Sung, P. & Prakash, L. A. Rev. Genet. 27, 33–70 (1993).
    Article CAS Google Scholar
  2. Matson, S. W. & Kaiser-Rogers, K. A. A. Rev. Biochem. 59, 289–329 (1990).
    Article CAS Google Scholar
  3. Qiu, H., Park, E., Prakash, L. & Prakash, S. Genes Dev. 7, 2161–2171 (1993).
    Article CAS Google Scholar
  4. Koleske, A. J., Buratowski, S., Nonet, M. & Young, R. A. Cell 69, 883–894 (1992).
    Article CAS Google Scholar
  5. Woontner, M., Wade, P. A., Bonner, J. & Jaehning, J. A. Molec. cell. Biol. 11, 4555–4560 (1991).
    Article CAS Google Scholar
  6. Bunick, D., Zandomeni, R., Ackerman, S. & Wienman, R. Cell 29, 877–886 (1982).
    Article CAS Google Scholar
  7. Sawadogo, M. & Roeder, R. G. J. biol. Chem. 259, 5321–5326 (1984).
    CAS Google Scholar
  8. Park, E. et al. Proc. natn. Acad. Sci. U.S.A. 89, 11416–11420 (1992).
    Article ADS CAS Google Scholar
  9. Sung, P., Higgins, D., Prakash, L. & Prakash, S. EMBO J. 7, 3263–3269 (1988).
    Article CAS Google Scholar
  10. Feaver, W. J., Gileadi, O., Li, Y. & Kornberg, R. D. Cell 67, 1223–1230 (1991).
    Article CAS Google Scholar
  11. Conoway, R. C. & Conoway, J. W. Proc. natn. Acad. Sci. U.S.A. 86, 7356–7360 (1989).
    Article ADS Google Scholar
  12. Schaeffer, L. et al. Science 260, 58–63 (1993).
    Article ADS CAS Google Scholar
  13. Guzder, S. N. et al. Nature 367, 91–94 (1994).
    Article ADS CAS Google Scholar
  14. Feaver, W. J. et al. Cell 75, 1379–1387 (1993).
    Article CAS Google Scholar
  15. Sung, P., Prakash, L., Weber, S. & Prakash, S. Proc. natn. Acad. Sci. U.S.A. 84, 6045–6049 (1987).
    Article ADS CAS Google Scholar
  16. Sung, P., Prakash, L., Matson, S. W. & Prakash, S. Proc. natn. Acad. Sci. U.S.A. 84, 8951–8955 (1987).
    Article ADS CAS Google Scholar
  17. Sung, P. et al. Nature 365, 852–855 (1993).
    Article ADS CAS Google Scholar
  18. Sung, P., Watkins, J. F., Prakash, L. & Prakash, S. J. biol. Chem. 269, 8303–8308 (1994).
    CAS PubMed Google Scholar
  19. Sung, P., Reynolds, P., Prakash, L. & Prakash, S. J. biol. Chem. 268, 26391–26399 (1993).
    CAS Google Scholar
  20. Tomkinson, A. E. et al. Nature 362, 860–862 (1993).
    Article ADS CAS Google Scholar
  21. Habraken, Y., Sung, P., Prakash, L. & Prakash, S. Nature 366, 365–368 (1993).
    Article ADS CAS Google Scholar
  22. Sweder, K. S. & Hanawalt, P. C. Science 262, 439 (1993).
    Article ADS CAS Google Scholar
  23. Sweder, K. S. & Hanawalt, P. C. J. biol. Chem. 269, 1852–1857 (1994).
    CAS Google Scholar
  24. Sweder, K. S. & Hanawalt, P. C. Proc. natn. Acad. Sci. U.S.A. 89, 10696–10700 (1992).
    Article ADS CAS Google Scholar
  25. Leadon, S. A. & Lawrence, D. A. J. biol. Chem. 267, 23175–23182 (1992).
    CAS PubMed Google Scholar
  26. Bailly, V. et al. Proc. natn. Acad. Sci. U.S.A. 89, 8273–8277 (1992).
    Article ADS CAS Google Scholar

Download references

Author information

Author notes

  1. Satya Prakash: To whom correspondence should be addressed.

Authors and Affiliations

  1. Sealy Center for Molecular Science, University of Texas Medical Branch, 6.104 Medical Research Building, Galveston, llth and Mechanic Street, Texas, 77555-1061, USA
    Sami N. Guzder, Patrick Sung, Véronique Bailly, Louise Prakash & Satya Prakash

Authors

  1. Sami N. Guzder
    You can also search for this author inPubMed Google Scholar
  2. Patrick Sung
    You can also search for this author inPubMed Google Scholar
  3. Véronique Bailly
    You can also search for this author inPubMed Google Scholar
  4. Louise Prakash
    You can also search for this author inPubMed Google Scholar
  5. Satya Prakash
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Guzder, S., Sung, P., Bailly, V. et al. RAD25 is a DMA helicase required for DNA repair and RNA polymerase II transcription.Nature 369, 578–581 (1994). https://doi.org/10.1038/369578a0

Download citation

This article is cited by