Prion protein is necessary for normal synaptic function (original) (raw)

Nature volume 370, pages 295–297 (1994)Cite this article

Abstract

THE prion diseases are neurodegenerative conditions, transmissible by inoculation, and in some cases inherited as an autosomal dominant disorder. They include Creutzfeldt–Jakob disease in humans and scrapie and bovine spongiform encephalopathy in animals. The prion consists principally of a post-translationally modified form of a host-encoded glycoprotein (PrPc), designated PrPSc (ref. 1); the normal cellular function of PrPc is, however, unknown. Although PrP is highly conserved among mammals and widely expressed in early embryogenesis, mice homozygous for disrupted PrP genes appear developmentally and behaviourally normal2. PrP is a protein anchored to the neuronal surface by glycosylphosphatidylinositol, suggesting a role in cell signalling or adhesion. Here we report that hippocampal slices from PrP null mice have weakened GABAA (γ-aminobutyric acid type A) receptor-mediated fast inhibition and impaired long-term potentiation. This impaired synaptic inhibition may be involved in the epileptiform activity seen in Creutzfeldt–Jakob disease and we argue that loss of function of PrPc may contribute to the early synaptic loss3 and neuronal degeneration seen in these diseases.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Prusiner, S. B. Science 252, 1515–1522 (1991).
    Article ADS CAS Google Scholar
  2. Bueler, H. et al. Nature 356, 577–582 (1992).
    Article ADS CAS Google Scholar
  3. Clinton, J., Forsyth, C., Royston, M. C. & Roberts, G. W. Neuroreport 4, 65–68 (1993).
    Article CAS Google Scholar
  4. DeArmond, S. J. et al. Neurology 37, 1271–1280 (1987).
    Article CAS Google Scholar
  5. Thompson, S. M. & Gahwiler, B. H. J. Neurophysiol. 61, 501–511 (1989).
    Article CAS Google Scholar
  6. Davies, C. H., Davies, S. N. & Collingridge, G. L. J. Physiol., Lond. 424, 513–531 (1990).
    Article CAS Google Scholar
  7. Bliss, T. V. P. & Collingridge, G. L. Nature 361, 31–39 (1993).
    Article ADS CAS Google Scholar
  8. Grover, L. M., Lambert, N. A., Schwartzkroin, P. A. & Teyler, T. J. J. Neurophysiol. 69, 1541–1555 (1993).
    Article CAS Google Scholar
  9. Alger, B. E. & Nicoll, R. A. J. Physiol., Lond. 328, 125–141 (1982).
    Article CAS Google Scholar
  10. Brown, D. A., Higgins, A. J., Marsh, S. & Smart, T. G. Adv. Biochem. Psychopharmac. 29, 321–326 (1981).
    CAS Google Scholar
  11. Allan, R. D., Evans, R. H. & Johnston, G. A. Br. J. Pharmac. 70, 609–615 (1980).
    Article CAS Google Scholar
  12. Brace, H. M., Jefferys, J. G. R. & Mellanby, J. J. Physiol., Lond. 368, 343–357 (1985).
    Article CAS Google Scholar
  13. Herron, C. E., Williamson, R. & Collingridge, G. L. Neurosci. Lett. 61, 255–260 (1985).
    Article CAS Google Scholar
  14. Coan, E. J., Irving, A. J. & Collingridge, G. L. Neurosci. Lett. 105, 205–210 (1989).
    Article CAS Google Scholar
  15. Huang, Y. Y., Colino, A., Selig, D. K. & Malenka, R. C. Science 255, 730–733 (1992).
    Article ADS CAS Google Scholar
  16. Bendheim, P. E. et al. Neurology 42, 149–156 (1992).
    Article CAS Google Scholar
  17. Prusiner, S. B. et al. Cell 63, 673–686 (1990).
    Article CAS Google Scholar
  18. Weissmann, C. Nature 349, 569–571 (1991).
    Article ADS CAS Google Scholar
  19. Palmer, M. S., Dryden, A. J., Hughes, J. T. & Collinge, J. Nature 352, 340–342 (1991).
    Article ADS CAS Google Scholar
  20. Collinge, J. et al. Lancet 336, 7–9 (1990).
    Article CAS Google Scholar
  21. Jefferys, J. G. R., Empson, R. M., Whittington, M. A. & Prusiner, S. B. Neurobiology of Disease 1, 3–15 (1994).
    Article Google Scholar
  22. Smith, T. L. J. Pharmac. exp. Ther. 232, 702–707 (1985).
    ADS CAS Google Scholar
  23. Empson, R. M. & Jefferys, J. G. R. J. Physiol., Lond. 465, 595–614 (1993).
    Article CAS Google Scholar

Download references

Author information

Author notes

  1. John Collinge: To whom correspondence should be addressed.

Authors and Affiliations

  1. Prion Disease Group, Department of Biochemistry and Molecular Genetics,
    John Collinge, Katie C. L. Sidle & Mark S. Palmer
  2. Department of Physiology and Biophysics, St Mary's Hospital Medical School, Imperial College, London, W2 1PG, UK
    Miles A. Whittington & John G. R. Jefferys
  3. Department of Neurology, St Mary's Hospital, London, W2 1NY, UK
    John Collinge
  4. Department of Biochemistry, University of Bristol, School of Medical Sciences, Bristol, BS8 1TD, UK
    Corinne J. Smith & Anthony R. Clarke

Authors

  1. John Collinge
    You can also search for this author inPubMed Google Scholar
  2. Miles A. Whittington
    You can also search for this author inPubMed Google Scholar
  3. Katie C. L. Sidle
    You can also search for this author inPubMed Google Scholar
  4. Corinne J. Smith
    You can also search for this author inPubMed Google Scholar
  5. Mark S. Palmer
    You can also search for this author inPubMed Google Scholar
  6. Anthony R. Clarke
    You can also search for this author inPubMed Google Scholar
  7. John G. R. Jefferys
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Collinge, J., Whittington, M., Sidle, K. et al. Prion protein is necessary for normal synaptic function.Nature 370, 295–297 (1994). https://doi.org/10.1038/370295a0

Download citation

This article is cited by