Fear conditioning induces associative long-term potentiation in the amygdala (original) (raw)

References

  1. Malenka, R. C. & Nicoll, R. A. NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms. Trends Neurosci. 16, 521–527 (1993).
    Article CAS Google Scholar
  2. Bliss, T. V. P. & Collingridge, G. L. Asynaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).
    Article ADS CAS Google Scholar
  3. Brown, T. H. & Chattarji, S. in Models of Neural Networks II (eds Domany, E., Van Hemmen, J. L. & Schulten, K.) 287–314 (Springer-Verlag, New York, (1994)).
    Book Google Scholar
  4. Stäubli, U. V. in Brain and Memory: Modulation and Mediation of Neuroplasticity (eds McGaugh, J. L., Weinberger, N. M. & Lynch, G.) 303–318 (Oxford Univ. Press, New York, (1995)).
    Book Google Scholar
  5. Barnes, C. A. Involvement of LTP in memory: Are we “searching under the streetlight?”. Neuron 15, 751–754 (1955).
    Article Google Scholar
  6. Eichenbaum, H. The LTP–memory connection. Nature 378, 131–132 (1995).
    Article ADS CAS Google Scholar
  7. Rogan, M. T. & LeDoux, J. E. LTP is accompanied by commensurate enhancement of auditory-evoked responses in a fear conditioning circuit. Neuron 15, 127–136 (1995).
    Article CAS Google Scholar
  8. Phillips, R. G. & LeDoux, J. E. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav. Neurosci. 106, 274–285 (1992).
    Article CAS Google Scholar
  9. Rogan, M. T., Stäubli, U. V. & LeDoux, J. E. AMPA-receptor facilitation accelerates fear learning without altering the level of conditioned fear acquired. J. Neurosci. 17, 5928–5935 (1997).
    Article CAS Google Scholar
  10. Kim, J. J. & Fanselow, M. S. Modality-specific retrograde amnesia of fear. Science 256, 675–677 (1992).
    Article ADS CAS Google Scholar
  11. Moser, E. I., Moser, M.-B. & Andersen, P. Potentiation of dentate synapses initiated by exploratory learning in rats: dissociation from brain temperature, motor activity, and arousal. Learn. Memory 1, 55–73 (1994).
    CAS Google Scholar
  12. Blanchard, R. J. & Blanchard, D. C. Passive and active reactions to fear-eliciting stimuli. J. Comp. Physiol. Psychol. 68, 129–135 (1969).
    Article CAS Google Scholar
  13. Blanchard, R. J. & Blanchard, D. C. Crouching as an index of fear. J. Comp. Physiol. Psychol. 67, 370–375 (1969).
    Article CAS Google Scholar
  14. Bouton, M. E. & Bolles, R. C. Conditioned fear assessed by freezing and by the suppression of three different baselines. Anim. Learn. Behav. 8, 429–434 (1980).
    Article Google Scholar
  15. Bolles, R. C. & Fanselow, M. S. Aperceptual-defensive-recuperative model of fear and pain. Behav. Brain Sci. 3, 291–323 (1980).
    Article Google Scholar
  16. Moser, E., Mathiesen, I. & Anderson, P. Association between brain temperature and dentate field potentials in exploring and swimming rats. Science 259, 1324–1326 (1993).
    Article ADS CAS Google Scholar
  17. Winson, J. & Absug, C. Neuronal transmission through hippocampal pathways dependent on behavior. J. Neurophysiol. 41, 716–732 (1978).
    Article CAS Google Scholar
  18. Leung, S. Behavior-dependent evoked potentials in the hippocampal CA1 region of the rat. I. Correlation with behavior and EEG. Brain Res. 198, 95–117 (1980).
    Article ADS CAS Google Scholar
  19. Buzsaki, G., Grastyan, E., Czopf, J., Kellenyi, L. & Prohaska, O. Changes in neuronal transmission in the rat hippocampus during behavior. Brain Res. 225, 235–247 (1981).
    Article CAS Google Scholar
  20. Quirk, G. J., Repa, J. C. & LeDoux, J. E. Fear conditioning enhances short-latency auditory responses of lateral amygdala neurons: parallel recordings in the freely behaving rat. Neuron 15, 1029–1039 (1995).
    Article CAS Google Scholar
  21. Skelton, R. W., Scarth, A. S., Wilkie, D. M., Miller, J. J. & Philips, G. Long-term increases in dentate granule cell responsivity accompany operant conditioning. J. Neurosci. 7, 3081–3087 (1987).
    Article CAS Google Scholar
  22. Deadwyler, S. A., West, M. O., Christian, E., Hampson, R. E. & Foster, T. C. Sequence-related changes in sensory-evoked potentials in the dentate gyrus: as mechanism for item-specific short-term information storage in the hippocampus. Behav. Neural Biol. 44, 201–212 (1985).
    Article CAS Google Scholar
  23. Jeffrey, K. J. LTP and spatial learning — where to next? Hippocampus 7, 95–110 (1997).
    Article Google Scholar
  24. Farb, C. R. & LeDoux, J. E. NMDA and AMPA receptors in the lateral nucleus of the amygdala are postsynaptic to auditory thalamic afferents. Synapse 27, 106–121 (1997).
    Article CAS Google Scholar
  25. Li, X., Phillips, R. G. & LeDoux, J. E. NMDA and non-NMDA receptors contribute to synaptic transmission between the medial geniculate body and the lateral nucleus of the amygdala. Exp. Brain Res. 105, 87–100 (1995).
    Article CAS Google Scholar
  26. Li, X. F., Stutzmann, G. E. & LeDoux, J. L. Convergent but temporally separated inputs to lateral amygdala neurons from the auditory thalamus and auditory cortex use different postsynaptic receptors: in vivo intracellular and extracellular recordings in fear conditioning pathways. Learn. Memory 3, 229–242 (1996).
    Article CAS Google Scholar
  27. Miserendino, M. J. D., Sananes, C. B., Melia, K. R. & Davis, M. Blocking of acquisition but not expression of conditioned fear-potentiated startle by NMDA antagonists in the amygdala. Nature 345, 716–718 (1990).
    Article ADS CAS Google Scholar
  28. Maren, S., Aharonov, G., Stote, D. L. & Fanselow, M. S. N-Methyl-d-Aspartate receptors in the basolateral amygdala are required for both acquisition and expression of the conditional fear in rats. Behav. Neurosci. 110, 1365–1374 (1996).
    Article CAS Google Scholar
  29. Gewirtz, J. C. & Davis, M. Second-order fear conditioning prevented by blocking NMDA receptors in amygdala. Nature 388, 471–473 (1997).
    Article ADS CAS Google Scholar
  30. Rogan, M. T. & LeDoux, J. E. Intra-amygdala infusion of APV blocks both auditory evoked potentials in the lateral amygdala and thalamo-amygdala transmission, but spares cortico-amygdala transmission. Soc. Neurosci. Abstr. 21, 1930 (1995).
    Google Scholar

Download references