Real-time measurement of transmitter release from single synaptic vesicles (original) (raw)

Nature volume 377, pages 62–65 (1995)Cite this article

Abstract

NEUROTRANSMITTER release is mediated by Ca2+ dependent exocytosis of synaptic vesicles1. Neither the amount of transmitter released from individual synaptic vesicles nor the kinetics of this process have yet been directly determined. Using carbon fibres as electrochemical detectors2,3, we have measured release of the neurotransmitter serotonin from cultured neurons of the leech4. This technique allowed us to monitor transmitter discharge from single synaptic vesicles as spike-like oxidation currents at high time resolution, providing new insight into the mechanism of neuronal exocytosis. Two types of signals were characterized, corresponding to exocytosis of small clear and large dense core vesicles present in these cells. A small vesicle discharges about 4,700 transmitter molecules with a time constant in the region of 260 μs, whereas large vesicles release their content of approximately 80,000 molecules with a time constant of about 1.3 ms. Release from both vesicle types is initiated rapidly, with a rise time of less than 60 μs, suggesting an abrupt opening of a preassembled fusion pore.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Augustine, G. J., Charlton, M. P. & Smith, S. J. A. Rev. Neurosci. 10, 633–693 (1987).
    Article CAS Google Scholar
  2. Chow, R. H., von Rüden, L. & Neher, E. Nature 356, 60–63 (1992).
    Article ADS CAS Google Scholar
  3. Wightman, R. M. et al. Proc. natn. Acad. Sci. U.S.A. 88, 10754–10758 (1991).
    Article ADS CAS Google Scholar
  4. Henderson, L. J. Physiol. 399, 309–324 (1983).
    Article Google Scholar
  5. Bruns, D., Engert, F. & Lux, H. D. Neuron 10, 559–572 (1993).
    Article CAS Google Scholar
  6. Bartfai, T., Iverfeldt, K., Fisone, G. & Serfozo, P. A. Rev. Pharmac. Toxicol. 28, 285–310 (1988).
    Article CAS Google Scholar
  7. Fuchs, P. A., Henderson, L. P. & Nicholls, J. G. J. Physiol. 323, 195–210 (1982).
    Article CAS Google Scholar
  8. Schiavo, G. et al. Nature 359, 832–835 (1992).
    Article ADS CAS Google Scholar
  9. Link, E. et al. Biochem. biophys. Res. Commun. 189, 1017–1023 (1992).
    Article CAS Google Scholar
  10. Kuffler, S. W. & Yosikami, D. J. Physiol. 251, 465–482 (1975).
    Article CAS Google Scholar
  11. Henderson, L. P., Kuffler, D. P., Nicholls, J. G. & Ren-Ji-Zhang J. Physiol. 340, 347–358 (1983).
    Article CAS Google Scholar
  12. Alvarez de Toledo, G., Fernandez-Chacon, R. & Fernandez, J. M. Nature 363, 554–558 (1993).
    Article ADS CAS Google Scholar
  13. Almers, W., Breckenridge, L. J. & Spruce, A. E. Secretion and its Control (eds Oxford, G. & Armstrong, C.) 269–282 (Rockefeller Univ. Press, New York, 1989).
    Google Scholar
  14. Adler, E. M., Augustine, G. J., Duffy, M. P. & Charlton, M. P. J. Neurosci. 11, 1496–1507 (1991).
    Article CAS Google Scholar
  15. Llinas, R., Sugimori, M. & Silver, R. B. Science 256, 677–679 (1992).
    Article ADS CAS Google Scholar
  16. Heidelberger, R., Heinemann, C., Neher, E. & Matthews, G. Nature 371, 513–515 (1994).
    Article ADS CAS Google Scholar
  17. Spruce, A. E., Breckenridge, L. J., Lee, A. K. & Almers, W. Neuron 4, 643–654 (1990).
    Article CAS Google Scholar
  18. Ceccarelli, B. & Hurlbut, W. P. Physiol. Rev. 60, 396–441 (1980).
    Article CAS Google Scholar
  19. Wrona, M. Z. & Dryhurst, G. Bioorg. Chem. 18, 291–317 (1990).
    Article CAS Google Scholar
  20. Kuffler, D. P., Nicholls, J. G. & Drapeau, P. J. comp. Neurol. 256, 516–526 (1987).
    Article CAS Google Scholar
  21. Beaudet, A. & Descarries, L. J. Physiol., Paris 77, 193–203 (1981).
    CAS Google Scholar

Download references

Author information

Authors and Affiliations

  1. Howard Hughes Medical Institute and Departments of Pharmacology and Cell Biology, Yale University Medical School, New Haven, Connecticut, 06510, USA
    Dieter Bruns & Reinhard Jahn

Authors

  1. Dieter Bruns
    You can also search for this author inPubMed Google Scholar
  2. Reinhard Jahn
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Bruns, D., Jahn, R. Real-time measurement of transmitter release from single synaptic vesicles.Nature 377, 62–65 (1995). https://doi.org/10.1038/377062a0

Download citation

This article is cited by