NT-4-mediated rescue of lateral geniculate neurons from effects of monocular deprivation (original) (raw)

Nature volume 378, pages 189–191 (1995)Cite this article

Abstract

ALTERING the balance of activity between the two eyes during the critical period for visual-system development profoundly affects competitive interactions among neurons in the lateral geniculate nucleus and primary visual cortex1–6. Neurons in the lateral geniculate nucleus that are deprived of activity by closing or silencing one eye atrophy as a result of competition with non-deprived neurons for some critical factor(s) presumed to be present in the cortex. Based on their actions in the developing visual system7–12, neurotrophins are attractive candidates for such factors. We tested whether neurotrophins mediate intracortical competition of affer-ents from the lateral geniculate nucleus by using monocular deprivation and a new method for highly localized, in vivo delivery of neurotrophins. This method allowed unambiguous identification of neurons that were exposed to neurotrophin. Here we report that only one neurotrophin, the TrkB ligand NT-4, rescued neurons in the lateral geniculate nucleus from the dystrophic effects of monocular deprivation.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Wiesel, T. N. & Hubel, D. H. J. Neurophysiol. 26, 978–993 (1963).
    Article CAS Google Scholar
  2. Hubel, D. H., Wiesel, T. N. & LeVay, S. Phil. Trans. R. Soc. Lond. B 278, 377–409 (1977).
    Article CAS Google Scholar
  3. Wiesel, T. N. Nature 299, 583–591 (1982).
    Article ADS CAS Google Scholar
  4. Guillery, R. R. & Stelzner, D. J. J. comp. Neurol. 139, 413–422 (1970).
    Article CAS Google Scholar
  5. Guillery, R. W. J. comp. Neurol. 144, 117–130 (1973).
    Article Google Scholar
  6. Sherman, S. M. & Spear, P. D. Physiol. Rev. 62, 738–855 (1982).
    Article CAS Google Scholar
  7. Cabelli, R. J., Hohn, A. & Shatz, C. J. Science 267, 1662–1666 (1995).
    Article ADS CAS Google Scholar
  8. Domenici, L. et al. Proc. natn. Acad. Sci. U.S.A. 88, 8811–8815 (1991).
    Article ADS CAS Google Scholar
  9. Domenici, L., Cellerino, A. & Maffei, L. Proc. R. Soc. Lond. B 251, 25–31 (1993).
    Article ADS CAS Google Scholar
  10. Berardi, N. et al. Proc. R. Soc. Lond. B 251, 17–23 (1993).
    Article ADS CAS Google Scholar
  11. Maffei, L. et al. J. Neurosci. 12, 4651–4662 (1992).
    Article CAS Google Scholar
  12. Carmignoto, G. et al. J. Physiol., Lond. 464, 343–360 (1993).
    Article CAS Google Scholar
  13. Lo, D. C., Riddle, D. R. & Katz, L. C. Soc. Neurosci. Abstr. 21, 537 (1995).
    Google Scholar
  14. Katz, L. C. & Iarovici, D. M. Neuroscience 34, 511–520 (1990).
    Article CAS Google Scholar
  15. Lin, C.-S. & Sherman, S. M. J. comp. Neurol. 181, 809–832 (1978).
    Article CAS Google Scholar
  16. Antonini, A. & Stryker, M. P. Science 260, 1819–1821 (1993).
    Article ADS CAS Google Scholar
  17. Conover, J. C. et al. Nature 375, 235–238 (1995).
    Article ADS CAS Google Scholar
  18. Liu, X. et al. Nature 375, 238–241 (1995).
    Article ADS CAS Google Scholar
  19. McAllister, A. K., Lo, D. C. & Katz, L. C. Neuron 15, 791–903 (1995).
    Article CAS Google Scholar
  20. Holtzmann, D. M. et al. J. Neurosci. 15, 1567–1576 (1995).
    Article Google Scholar
  21. Hayashi, M., Yamashita, A. & Shimizu, K. Neuroscience 36, 683–689 (1990).
    Article CAS Google Scholar
  22. Large, T. H. et al. Science 234, 352–355 (1986).
    Article ADS CAS Google Scholar
  23. Holtzman, D. M. et al. Neuron 9, 465–478 (1992).
    Article CAS Google Scholar
  24. Merlio, J.-P., Ernfors, P., Jaber, M. & Persson, H. Neuroscience 51, 513–532 (1992).
    Article CAS Google Scholar
  25. Domenici, L. et al. Vis. Neurosci. 11, 1093–1102 (1994).
    Article CAS Google Scholar
  26. Allendoerfer, K. L. et al. J. Neurosci. 14, 1795–1811 (1994).
    Article CAS Google Scholar
  27. Timmusk, T. et al. Eur. J. Neurosci. 5, 605–613 (1993).
    Article CAS Google Scholar
  28. Callaway, E. M. & Katz, L. C. J. Neurosci. 10, 1134–1153 (1990).
    Article CAS Google Scholar
  29. Law, M. I., Zahs, K. R. & Stryker, M. P. J. comp. Neurol. 278, 157–180 (1988).
    Article CAS Google Scholar
  30. Katz, L. C., Burkhalter, A. & Dreyer, W. J. Nature 310, 498–500 (1984).
    Article ADS CAS Google Scholar

Download references

Author information

Authors and Affiliations

  1. Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, 27710, USA
    David R. Riddle , Donald C. Lo & Lawrence C. Katz

Authors

  1. David R. Riddle
    You can also search for this author inPubMed Google Scholar
  2. Donald C. Lo
    You can also search for this author inPubMed Google Scholar
  3. Lawrence C. Katz
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Riddle , D., Lo, D. & Katz, L. NT-4-mediated rescue of lateral geniculate neurons from effects of monocular deprivation.Nature 378, 189–191 (1995). https://doi.org/10.1038/378189a0

Download citation

This article is cited by