Voltage-dependent modulation of N-type calcium channels by G-protein β γsubunits (original) (raw)

Nature volume 380, pages 255–258 (1996)Cite this article

Abstract

THE most commonly used signal transduction pathway for receptor-mediated N-type Ca2+-channel modulation involves activation of a heterotrimeric G protein to produce voltage-dependent inhibition1. Although it is widely assumed that Gα mediates this effect, experiments to address this hypothesis directly are lacking. Here I show that transient overexpression of Gβγ in sympathetic neurons mimics and occludes the voltage-dependent Ca2+ channel modulation produced by noradrenaline (NA). Conversely, over-expression of Gα produces minimal effects on basal Ca2+ channel behaviour but attenuates NA-mediated inhibition in a manner consistent with the buffering of Gβγ. These observations indicate that it is Gβγ, and not Gα, that mediates voltage-dependent inhibition of N-type Ca2+ channels. The identification of Gβγ as the mediator of this pathway has broad implications as G-protein-coupled receptors, many of which are implicated in disease or are targets of therapeutic agents, couple to N-type Ca2+ channels2 and may modulate synaptic transmission by this mechanism3,4.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Hille, B. Trends Neurosci. 17, 531–536 (1994).
    Article CAS Google Scholar
  2. Anwyl, R. Brain Res. Rev. 16, 265–281 (1991).
    Article CAS Google Scholar
  3. Miller, R. FASEB J. 4, 3291–3299 (1990).
    Article CAS Google Scholar
  4. Dunlap, K., Luebke, J. & Turner, T. Trends Neurosci. 18, 89–98 (1995).
    Article CAS Google Scholar
  5. Plummer, M. R., Rittenhouse, A., Kanevsky, M. & Hess, P. J. Neurosci. 11, 2339–2348 (1991).
    Article CAS Google Scholar
  6. Regan, L. J., Sah, D. W. Y. & Bean, B. P. Neuron 6, 269–280 (1991).
    Article CAS Google Scholar
  7. Diversé-Pierluissi, M., Goldsmith, P. K. & Dunlap, K. Neuron 14, 191–200 (1995).
    Article Google Scholar
  8. Schofield, G. G. Eur. J. Pharmac. 180, 37–47 (1990).
    Article CAS Google Scholar
  9. Strittmatter, S. M., Fishman, M. C. & Zhu, X.-P. J. Neurosci. 14, 2327–2338 (1994).
    Article CAS Google Scholar
  10. Caulfield, M. P. et al. J. Physiol., Lond. 477, 415–422 (1994).
    Article CAS Google Scholar
  11. Bean, B. Nature 340, 153–156 (1989).
    Article ADS CAS Google Scholar
  12. Grassi, F. & Lux, H. D. Neurosci. Lett. 105, 113–119 (1989).
    Article CAS Google Scholar
  13. Elmslie, K. S., Zhou, W. & Jones, S. W. Neuron 5, 75–80 (1990).
    Article CAS Google Scholar
  14. Slepak, V. Z., Katz, A. & Simon, M. I. J. biol. Chem. 270, 4037–4041 (1995).
    Article CAS Google Scholar
  15. Slepak, V. Z., Wilkie, T. M. & Simon, M. I. J. biol. Chem. 268, 1414–1423 (1993).
    CAS PubMed Google Scholar
  16. Slepak, V. Z. et al. J. biol. Chem. 268, 21889–21894 (1993).
    CAS PubMed Google Scholar
  17. Masters, S. B. et al. J. biol. Chem. 264, 15467–15474 (1989).
    CAS PubMed Google Scholar
  18. Ikeda, S. R. J. Physiol., Lond. 439, 181–214 (1991).
    Article CAS Google Scholar
  19. Clapham, D. E. & Neer, E. J. Nature 365, 403–406 (1993).
    Article ADS CAS Google Scholar
  20. Müller, S. & Lohse, M. J. Biochem. Soc. Trans. 23, 141–148 (1995).
    Article Google Scholar
  21. Chen, H. et al. Science 268, 1166–1169 (1995).
    Article ADS CAS Google Scholar
  22. Pragnell, M. et al. Nature 368, 67–70 (1994).
    Article ADS CAS Google Scholar
  23. Campbell, V., Berrow, N. S., Fitzgerald, E. M., Brickley, K. & Dolphin, A. C. J. Physiol., Lond. 485, 365–372 (1995).
    Article CAS Google Scholar
  24. Roche, J. P., Anantharam, V. & Treistman, S. N. FEBS Lett. 371, 43–46 (1995).
    Article CAS Google Scholar
  25. Bourinet, E. et al. Soc. Neurosci. Abstr. 21, 515 (1995).
    Google Scholar
  26. Mintz, I. & Bean, B. P. Neuron 10, 889–898 (1993).
    Article CAS Google Scholar
  27. Logothetis, D. E., Kurachi, Y., Galper, J., Neer, E. J. & Clapham, D. E. Nature 325, 321–326 (1987).
    Article ADS CAS Google Scholar
  28. Zhu, Y. & Ikeda, S. R. Neuron 13, 657–669 (1994).
    Article CAS Google Scholar
  29. Ikeda, S. R., Lovinger, D. M., McCool, B. A. & Lewis, D. L. Neuron 14, 1029–1038 (1995).
    Article CAS Google Scholar
  30. Heim, R., Cubitt, A. B. & Tsien, R. Y. Nature 373, 663–664 (1995).
    Article ADS CAS Google Scholar

Download references

Author information

Authors and Affiliations

  1. Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, Georgia, 30912-2300, USA
    Stephen R. Ikeda

Authors

  1. Stephen R. Ikeda
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Ikeda, S. Voltage-dependent modulation of N-type calcium channels by G-protein β γsubunits.Nature 380, 255–258 (1996). https://doi.org/10.1038/380255a0

Download citation

This article is cited by