Simultaneous independent measurement of endocytosis and exocytosis (original) (raw)

Nature volume 380, pages 531–534 (1996)Cite this article

Abstract

STUDIES of membrane traffic between the cytoplasm and surface of a cell suggest that membrane internalization is tightly coupled to secretion. Studies using the capacitance technique show that endocytosis can follow evoked exocytosis within a second or less1–3. The capacitance technique, however, measures only the net change in cell surface area, and thus separating exocytosis from endocytosis requires that the two events do not overlap in time. This condition is probably met with small, brief stimuli1–5, but during prolonged stimulation it is more likely that exocytosis and endocytosis occur simultaneously6. We used FM1-43 fluorescence, which provides a cumulative measure of exocytosis, independent of endocytosis, in combination with capacitance monitoring to track unidirectional movements of membrane simultaneously and in real time in bovine adrenal chromaffin cells. We confirm that, with relatively small stimuli, exocytosis ceases before endocytosis begins (no overlap). In contrast, during prolonged stimulation, the onset of endocytosis is delayed by 2–3 min, but then the rate of endocytosis quickly grows to equal that of exocytosis. The delayed onset of endocytosis may be an emergency defence against catastrophic cell swelling.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Neher, E. & Zucker, R. Neuron 10, 21–30 (1993).
    Article CAS Google Scholar
  2. Thomas, P., Lee, A. K., Wong, J. G. & Aimers, W. J. Cell Biol. 124, 667–675 (1994).
    Article CAS Google Scholar
  3. Artalejo, C. R., Henley, J. R., McNiven, M. A. & Palfrey, H. C. Proc. natn. Acad. Sci. U.S.A. 92, 8328–8332 (1995).
    Article ADS CAS Google Scholar
  4. Artalejo, C. R., Elhamdani, A. & Palfrey, H. C. Neuron 16, 195–205 (1996).
    Article CAS Google Scholar
  5. von Gersdorff, H. & Mattherw, G. Nature 367, 735–739 (1994).
    Article ADS CAS Google Scholar
  6. Augustine, G. J. & Neher, E. J. Physiol. 450, 247–271 (1992).
    Article CAS Google Scholar
  7. Neher, E. & Marty, A. Proc. natn. Acad. Sci. U.S.A. 79, 6712–6716 (1982).
    Article ADS CAS Google Scholar
  8. Joshi, C. & Fernandez, J. M. Biophys. J. 53, 885–892 (1988).
    Article CAS Google Scholar
  9. Horrigan, F. T. & Bookman, R. J. Neuron 13, 1119–1129 (1994).
    Article CAS Google Scholar
  10. Burgoyne, R. D. Pflügers Arch. 430, 213–219 (1995).
    Article CAS Google Scholar
  11. Mollard, P., Seward, E. P. & Nowycky, M. C. Proc. natn. Acad. Sci. U.S.A. 92, 3065–3069 (1995).
    Article ADS CAS Google Scholar
  12. Heidelberger, R., Heinemann, C., Neher, E. & Matthews, G. Nature 371, 513–515 (1994).
    Article ADS CAS Google Scholar
  13. Parsons, T. D., Lenzi, D., Almers, W. & Roberts, W. M. Neuron 13, 875–883 (1994).
    Article CAS Google Scholar
  14. Rieke, F. & Schwartz, E. A. Neuron 13, 863–873 (1994).
    Article CAS Google Scholar
  15. Alvarezde Toledo, G., Fernandez-Chacon, R. & Fernandez, J. M. Nature 363, 554–558 (1993).
    Article ADS CAS Google Scholar
  16. Hartmann, J., Scepek, S. & Lindau, M. J. Physiol., Lond. 483, 201–209 (1995).
    Article CAS Google Scholar
  17. Betz, W. J. & Bewick, G. S. Science 255, 200–203 (1992).
    Article ADS CAS Google Scholar
  18. Betz, W. J., Mao, F. & Bewick, G. S. J. Neuroscience 12, 363–375 (1992).
    Article CAS Google Scholar
  19. Ryan, T. A. et al. Neuron 11, 713–724 (1993).
    Article CAS Google Scholar
  20. Betz, W. J. & Henkel, A. W. J. Cell Biol. 124, 843–854 (1994).
    Article CAS Google Scholar
  21. Kraszewski, K. et al. Neuroscience 15, 4328–4342 (1995).
    Article CAS Google Scholar
  22. Ryan, T. A. & Smith, S. J. Neuron 14, 983–989 (1995).
    Article CAS Google Scholar
  23. Henkel, A. W., Lübke, J. & Betz, W. J. Proc. natn. Acad. Sci. U.S.A. (in the press).
  24. Grinvald, A., Hildesheim, R., Farber, I. C. & Anglister, L. Biophys. J. 39, 301–308 (1982).
    Article ADS CAS Google Scholar
  25. Grinvald, A., Frostig, R. D., Lieke, E. & Hildesheim, R. Physiol. Rev. 68, 1285–1366 (1988).
    Article CAS Google Scholar
  26. Oberhauser, A. F. & Fernandez, J. M. Biophys. J. 69, 451–459 (1995).
    Article ADS CAS Google Scholar
  27. Greer, M. A., Hagemenas, F. C. & Illingsworth, D. R. Hormone Metab. Res. 24, (1992).
  28. Hoffmann, E. K. & Dunham, P. B. Int. Rev. Cytol. 161, 173–262 (1995).
    Article CAS Google Scholar
  29. Fidler, N. & Fernandez, J. M. Biophys. Journal 56, 1153–1162 (1989).
    Article ADS CAS Google Scholar
  30. Neher, E. J. Physiol., Lond. 395, 193–214 (1988).
    Article ADS CAS Google Scholar

Download references

Author information

Authors and Affiliations

  1. Department of Physiology and Neuroscience Program, University of Colorado Medical School, Denver, Colorado, 80262, USA
    C. B. Smith & W. J. Betz

Authors

  1. C. B. Smith
    You can also search for this author inPubMed Google Scholar
  2. W. J. Betz
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Smith, C., Betz, W. Simultaneous independent measurement of endocytosis and exocytosis.Nature 380, 531–534 (1996). https://doi.org/10.1038/380531a0

Download citation

This article is cited by