Long-term potentiation and functional synapse induction in developing hippocampus (original) (raw)

Nature volume 381, pages 71–75 (1996)Cite this article

Abstract

LONG-TERM potentiation (LTP) is a cellular mechanism that potentially underlies learning and memory1. To test the hypothesis that LTP is involved in activity-dependent synapse formation, we combined whole-cell recordings and confocal microscopy to investigate hippocampal glutamatergic synapses at their earliest stages of development. Here we report that, during the first postnatal week, the hippocampal glutamatergic network becomes gradually functional owing to the transformation of precursor, pure NMDA (_N_-methyl-D-aspartate)-receptor-based synaptic contacts into conducting AMPA (α-amino-3-hydroxy-5-methylisoxazole-4-proprionate)/NMDA-receptor-type synapses. This functional synapse induction is caused by an associative form of LTP, so it is input-specific and easily triggered experimentally by pairing presynaptic stimulation with post-synaptic depolarization. Our results challenge previous views that LTP occurs in the hippocampus only at later stages of development2–6 and that its induction requires dendritic spines7. They also provide direct evidence that LTP is important for the activity-dependent formation of conducting glutamatergic synapses in the developing mammalian brain.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Bliss, T. V. P. & Collingridge, G. L. Nature 361, 31–39 (1993).
    Article ADS CAS Google Scholar
  2. Bolshakov, V. Y. & Siegelbaum, S. A. Science 264, 1148–1152 (1994).
    Article ADS CAS Google Scholar
  3. Dudek, S. M. & Bear, M. F. J. Neurosci. 13(7), 2910–2918 (1993).
    Article CAS Google Scholar
  4. Bekenstein, J. W. & Lothman, E. W. Dev. Brain Res. 63, 245–251 (1991).
    Article CAS Google Scholar
  5. Harris, K. M. & Teyler, T. J. J. Physiol., Lond. 346, 27–48 (1984).
    Article CAS Google Scholar
  6. Baudry, M., Arst, D., Oliver, M. & Lynch, G. Brain Res. 227(1), 37–48 (1981).
    Article CAS Google Scholar
  7. Harris, K. M. & Kater, S. B. A. Rev. Neurosci. 17, 341–371 (1994).
    Article CAS Google Scholar
  8. Bayer, S. A. J. comp. Neurol. 190, 87–114 (1980).
    Article CAS Google Scholar
  9. Edwards, F., Konnerth, A., Sakmann, B. & Takahashi, T. Pflügers Arch. 414, 600–612 (1989).
    Article CAS Google Scholar
  10. Hestrin, S., Nicoll, R. A., Perkel, D. J. & Sah, P. J. Physiol., Lond. 422, 203–225 (1990).
    Article CAS Google Scholar
  11. Liao, D., Hessler, N. A. & Malinow, R. Nature 375, 400–404 (1995).
    Article ADS CAS Google Scholar
  12. Isaac, J. T. R., Nicoll, R. A. & Malenka, R. C. Neuron 15, 427–434 (1995).
    Article CAS Google Scholar
  13. Yuste, R. & Denk, W. Nature 375, 682–684 (1995).
    Article ADS CAS Google Scholar
  14. Steward, O. & Falk, P. M. J. comp. Neurol. 314, 545–557 (1991).
    Article CAS Google Scholar
  15. Partin, K. M. et al. Neuron 11, 1069–1082 (1993).
    Article CAS Google Scholar
  16. Wong, L. A. & Mayer, M. L. Molec. Pharmac. 44, 504–510 (1993).
    CAS Google Scholar
  17. Lynch, G. et al. Nature 305, 719–721 (1983).
    Article ADS CAS Google Scholar
  18. Malenka, R. C., Kauer, J. A., Zucker, R. S. & Nicoll, R. S. Science 242, 81–84 (1988).
    Article ADS CAS Google Scholar
  19. Gustafsson, B. & Wigström, H. Trends Neurosci. 11, 156–162 (1988).
    Article CAS Google Scholar
  20. Hebb, D. O. The Organization of Behaviour (Wiley, New York, 1949).
    Google Scholar
  21. Bekkers, J. M. & Stevens, C. F. Nature 341, 230–233 (1989).
    Article ADS CAS Google Scholar
  22. Konnerth, A., Keller, B. U. & Lev-Tov, A. Pflügers Arch 417, 285–290 (1990).
    Article CAS Google Scholar
  23. Konnerth, A. Trends Neurosci. 13, 321–323 (1990).
    Article CAS Google Scholar
  24. Eilers, J., Augustine, G. J. & Konnerth, A. Nature 373, 155–158 (1995).
    Article ADS CAS Google Scholar
  25. Eilers, J., Callewaert, G., Armstrong, C. & Konnerth, A. Proc. natn. Acad. Sci. U.S.A. 92, 10272–10276 (1995).
    Article ADS CAS Google Scholar

Download references

Author information

Authors and Affiliations

  1. Physiologisches Institut der Universität des Saarlandes, D-66421, Homburg, Germany
    Guylaine M. Durand, Yury Kovalchuk & Arthur Konnerth

Authors

  1. Guylaine M. Durand
    You can also search for this author inPubMed Google Scholar
  2. Yury Kovalchuk
    You can also search for this author inPubMed Google Scholar
  3. Arthur Konnerth
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Durand, G., Kovalchuk, Y. & Konnerth, A. Long-term potentiation and functional synapse induction in developing hippocampus.Nature 381, 71–75 (1996). https://doi.org/10.1038/381071a0

Download citation

This article is cited by