Receptor-associated Mad homologues synergize as effectors of the TGF-β response (original) (raw)

Nature volume 383, pages 168–172 (1996)Cite this article

Abstract

TRANSFORMING growth factor-β TGF-β is the prototype for a family of extracellular proteins that affect cell proliferation and tissue differentiation1–3. TGF-β-related factors, including BMP-2/4, Dpp and activin, act through two types of serine/threonine kinase receptors which can form a heteromeric complex3,4. However, the mechanism of signal transduction by these receptors is largely unknown. In Drosophila, Mad is required for signalling by Dpp5. We have isolated complementary DNAs for four human Mad homologues, one of which, hMAD-4, is identical to DPC-4, a candidate tumour suppressor6. hMAD-3 and -4 synergized to induce strong ligand-independent TGF-β-like responses. When truncated at their carboxy termini, hMAD-3 and -4 act as dominant-negative inhibitors of the normal TGF-β response. The activity of hMAD-3 and -4 was regulated by the TGF-β receptors, and hMAD-3 but not hMAD-4 was phosphorylated and associated with the ligand-bound receptor complex. These results define hMAD-3 and -4 as effectors of the TGF-β response and demonstrate a function for DPC-4/hMAD-4 as a tumour suppressor.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Derynck, R. in The Cytokine Handbook (ed. Thomson, A. W.) 319–342 (Academic, San Diego, 1994).
    Google Scholar
  2. Kingsley, D. M. Genes Dev. 8, 133–146 (1994).
    Article CAS PubMed Google Scholar
  3. Massagué, J., Attisano, L. & Wrana, J. L. Trends Cell Biol. 4, 172–177 (1994).
    Article PubMed Google Scholar
  4. Derynck, R. Trends Biochem. Sci. 19, 548–553 (1994).
    Article CAS PubMed Google Scholar
  5. Sekelsky, J. J., Newfeld, S. J., Raftery, L. A., Chartoff, E. H. & Gelbart, W. M. Genetics 139, 1347–1358 (1995).
    CAS PubMed PubMed Central Google Scholar
  6. Hahn, S. A. et al. Science 271, 350–353 (1996).
    Article ADS CAS PubMed Google Scholar
  7. Hoodless, P. A. et al. Cell 85, 489–500 (1996).
    Article CAS PubMed Google Scholar
  8. Graff, J. M., Bansal, A. & Melton, D. A. Cell 85, 479–487 (1996).
    Article CAS PubMed Google Scholar
  9. Abe, M. et al. Anal. Biochem. 216, 276–284 (1994).
    Article CAS PubMed Google Scholar
  10. Goyette, M. C. et al. Mol. Cell. Biol. 12, 1387–1395 (1994).
    Article Google Scholar
  11. Wrana, J. L. et al. Cell 71, 1003–1014 (1992).
    Article CAS PubMed Google Scholar
  12. Weis-Garcia, F. & Massagué, J. EMBO J. 15, 276–289 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  13. Feng, X.-H., Filvaroff, E. H. & Derynck, R. J. Biol. Chem. 270, 24237–24245 (1995).
    Article CAS PubMed Google Scholar
  14. Matzuk, M. M. & Bradley, A. Biochim. Biophys. Acta 1130, 105–108 (1992) (erratum, 243).
    Article CAS PubMed Google Scholar
  15. Ebner, R. et al. Science 260, 1344–1348 (1993).
    Article ADS CAS PubMed Google Scholar
  16. Gyuris, J., Golemis, E., Chertkov, H. & Brent, R. Cell 75, 791–803 (1993).
    Article CAS PubMed Google Scholar
  17. Liu, F. et al. Nature 381, 620–623 (1996).
    Article ADS CAS PubMed Google Scholar
  18. Ihle, J. Nature 377, 591–594 (1995).
    Article ADS CAS PubMed Google Scholar
  19. Arora, K. et al. Cell 81, 781–790 (1995).
    Article CAS PubMed Google Scholar
  20. Grieder, N. C., Nellen, D., Burke, R., Basler, K. & Affolter, M. Cell 81, 791–800 (1995).
    Article CAS PubMed Google Scholar
  21. de Celis, J. F., Barrio, R. & Kafatos, F. C. Nature 381, 421–424 (1996).
    Article ADS CAS PubMed Google Scholar
  22. Markowitz, S. et al. Science 268, 1336–1338 (1995).
    Article ADS CAS PubMed Google Scholar
  23. Laiho, M., DeCaprio, J. A., Ludlow, J. W. & Livingston, D. M. Cell 62, 175–185 (1990).
    Article CAS PubMed Google Scholar
  24. Lennon, G. G., Auffray, C., Polymeropoulos, M. & Soares, M. B. Genomics 33, 151–152 (1996).
    Article CAS PubMed Google Scholar
  25. Chen, R.-H., Miettinen, P. J., Maruoka, E. M., Choy, L. & Derynck, R. Nature 377, 548–552 (1995).
    Article ADS CAS PubMed Google Scholar
  26. Lin, H. Y., Wang, X.-F., Ng-Eaton, E., Weinberg, R. A. & Lodish, H. F. Cell 68, 775–785 (1992).
    Article CAS PubMed Google Scholar
  27. Keeton, M. R., Curriden, S. A., van Zonneveld, A. & Loskutoff, D. J. J. Biol. Chem. 266, 23048–23052 (1991).
    CAS PubMed Google Scholar
  28. Like, B. & Massagué, J. J. Biol. Chem. 261, 13426–13429 (1986).
    CAS PubMed Google Scholar
  29. Smith, D. B. & Johnson, K. S. Gene 67, 31–40 (1990).
    Article Google Scholar
  30. Eppert, K. et al. Cell 86, 543–552 (1996).
    Article CAS PubMed Google Scholar
  31. Riggin, G. J. et al. Nature Genet. 13, 347–349 (1996).
    Article Google Scholar
  32. Baker, J. C. & Harland, R. M. Genes Dev. 10 1880–1889 (1996).
    Article CAS PubMed Google Scholar

Download references

Author information

Authors and Affiliations

  1. Departments of Growth and Development, and Anatomy, Programs in Cell Biology and Developmental Biology, University of California at San Francisco, San Francisco, California, 94143-0640, USA
    Ying Zhang, Xin-Hua Feng, Rui-Yun Wu & Rik Derynck

Authors

  1. Ying Zhang
    You can also search for this author inPubMed Google Scholar
  2. Xin-Hua Feng
    You can also search for this author inPubMed Google Scholar
  3. Rui-Yun Wu
    You can also search for this author inPubMed Google Scholar
  4. Rik Derynck
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Zhang, Y., Feng, XH., Wu, RY. et al. Receptor-associated Mad homologues synergize as effectors of the TGF-β response.Nature 383, 168–172 (1996). https://doi.org/10.1038/383168a0

Download citation