Crystal structure of a DExx box DNA helicase (original) (raw)

Nature volume 384, pages 379–383 (1996)Cite this article

Abstract

THERE are a wide variety of helicases that unwind helical DNA1 and RNA substrates2. The twelve helicases that have been identified in _Escherichia coli_1 play a role in almost all cellular processes involving nucleic acids. We have solved the crystal structure of a monomeric form of a DNA helicase from Bacillus stearothermo-philus, alone and in a complex with ADP, at 2.5 and 2.9 Å resolution, respectively. The enzyme comprises two domains with a deep cleft running between them. The ATP-binding site, which is situated at the bottom of this cleft, is formed by motifs that are conserved across the superfamily of related helicases. Unexpected structural homo logy with the DNA recombination protein, RecA, suggests how ATP binding and hydrolysis may drive conformational changes of the enzyme during catalysis, and implies that there is a common mechanism for all helicases.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Lohman, T. M. & Bjornson, K. P. Annu. Rev. Biochem. 65, 169–214 (1996).
    Article CAS Google Scholar
  2. Schmid, S. R. & Linder, P. Mol. Microbiol. 6, 283–292 (1992).
    Article CAS Google Scholar
  3. Egelman, E. H. Structure 4, 759–762 (1996).
    Article CAS Google Scholar
  4. Chao, K. & Lohman, T. M. J. Mol. Biol. 221, 1165–1181 (1991).
    Article CAS Google Scholar
  5. Runyon, G. T., Wong, I. & Lohman, T. M. Biochemistry 32, 602–612 (1993).
    Article CAS Google Scholar
  6. Schaeffer, L. et al. Science 260, 58–63 (1993).
    Article ADS CAS Google Scholar
  7. Iordanescu, S. Mol. Gen. Genet. 241, 185–192 (1993).
    Article CAS Google Scholar
  8. Gorbalenya, A. E. & Koonin, E. V. Curr. Opin. Struct. Biol. 3, 419–429 (1993).
    Article CAS Google Scholar
  9. Story, R. M., Weber, I. T. & Steitz, T. A. Nature 355, 318–325 (1992).
    Article ADS CAS Google Scholar
  10. Walker, J. E., Saraste, M., Runswick, M. J. & Gay, N. J. EMBO J. 1, 945–951 (1982).
    Article CAS Google Scholar
  11. Pause, A. & Sonenburg, N. EMBO J. 7, 2643–2654 (1992).
    Article Google Scholar
  12. Gross, C. H. & Shuman, S. J. Virol. 69, 4727–4736 (1995).
    CAS Google Scholar
  13. Brosh, R. M. & Matson, S. W. J. Bacteriol. 177, 5612–5621 (1995).
    Article CAS Google Scholar
  14. Rozen, F. et al. Mol. Cell. Biol. 10, 1134–1144 (1990).
    Article CAS Google Scholar
  15. Washburn, J. D. & Kushner, S. R. J. Bacteriol. 175, 341–350 (1993).
    Article CAS Google Scholar
  16. Story, R. M. & Steitz, T. A. Nature 355, 374–376 (1992).
    Article ADS CAS Google Scholar
  17. Wong, I. & Lohman, T. M. Science 256, 350–355 (1992).
    Article ADS CAS Google Scholar
  18. Stasiak, A., Egelman, E. H. & Howard-Flanders, P. J. Mol. Biol. 202, 659–662 (1988).
    Article CAS Google Scholar
  19. Zhu, L. & Weller, S. K. Virology 166, 366–378 (1988).
    Article CAS Google Scholar
  20. Crute, J. J., Mocarski, E. S. & Lehman, I. R. Nucleic Acids Res. 16, 6585–6596 (1988).
    Article CAS Google Scholar
  21. Opperman, T. & Richardson, J. P. J. Bacteriol. 176, 6033–5043 (1994).
    Google Scholar
  22. Abrahams, J.-P., Leslie, A. G. W., Lutter, R. & Walker, J. E. Nature 370, 621–628 (1994).
    Article ADS CAS Google Scholar
  23. Miwa, Y., Horiguchi, T. & Shigesada, K. J. Mol. Biol. 254, 815–837 (1995).
    Article CAS Google Scholar
  24. Yu, X., Angov, E., Camerini-Otero, R. D. & Egelman, E. H. Biophys. J. 69, 2728–2738 (1995).
    Article ADS CAS Google Scholar
  25. Hingorani, M. M. & Patel, S. S. Biochemistry 35, 2218–2228 (1996).
    Article CAS Google Scholar
  26. Bujalowski, W. & Klonowska, M. M. Biochemistry 32, 5888–5900 (1993).
    Article CAS Google Scholar
  27. Zavitz, K. H. & Marians, K. J. J. Biol. Chem. 268, 4337–4346 (1993).
    CAS PubMed Google Scholar
  28. Lee, M. S. & Marians, K. J. Proc. Natl Acad. Sci. USA 84, 8345–8349 (1987).
    Article ADS CAS Google Scholar
  29. Zavitz, K. H. & Marians, K. J. J. Biol. Chem. 267, 6933–6940 (1992).
    CAS PubMed Google Scholar
  30. Brunger, A. T. Nature 355, 472–474 (1992).
    Article ADS CAS Google Scholar

Download references

Author information

Author notes

  1. James A. Brannigan: Department of Chemistry, University of York, Heslington, YorkYOl 5DD, UK

Authors and Affiliations

  1. Laboratory of Molecular Biophysics, Rex Richards Building, University of Oxford, South Parks Road, Oxford, 0X1 3QU, UK
    Hosahalli S. Subramanya, Louise E. Bird, James A. Brannigan & Dale B. Wigley

Authors

  1. Hosahalli S. Subramanya
    You can also search for this author inPubMed Google Scholar
  2. Louise E. Bird
    You can also search for this author inPubMed Google Scholar
  3. James A. Brannigan
    You can also search for this author inPubMed Google Scholar
  4. Dale B. Wigley
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Subramanya, H., Bird, L., Brannigan, J. et al. Crystal structure of a DExx box DNA helicase.Nature 384, 379–383 (1996). https://doi.org/10.1038/384379a0

Download citation

This article is cited by