Crystal structure of the nucleosome core particle at 2.8 Å resolution (original) (raw)
References
Kornberg, R. D. Structure of chromatin. Annu. Rev. Biochem.46, 931–954 (1977). ArticleCAS Google Scholar
McGhee, J. D. & Felsenfeld, G. Nucleosome structure. Annu. Rev. Biochem.49, 1115–1156 (1980). ArticleCAS Google Scholar
Widom, J. Toward a unified model of chromatin folding. Annu. Rev. Biophys. Biophys. Chem.18, 365–395 (1989). ArticleCAS Google Scholar
van Holde, K. E. Chromatin(Springer, New York, (1988). Google Scholar
Blank, T. A. & Becker, P. B. The effect of nucleosome phasing sequences and DNA topology on nucleosome spacing. J. Mol. Biol.260, 1–8 (1996). ArticleCAS Google Scholar
Wallrath, L. L., Lu, Q., Granok, H. & Elgin, S. C. R. Architectural variations of inducible eukaryotic promoters: Preset and remodeling chromatin structures. BioEssays16, 165–170 (1994). ArticleCAS Google Scholar
Flaus, A., Luger, K., Tan, S. & Richmond, T. J. Mapping nucleosome position at single base-pair resolution by using site-directed hydroxyl radicals. Proc. Natl Acad. Sci. USA93, 1370–1375 (1996). ArticleADSCAS Google Scholar
Travers, A. A. DNA bending and nucleosome positioning. Trends Biochem. Sci.12, 108–112 (1987). ArticleADSCAS Google Scholar
Flaus, A. & Richmond, T. J. Positioning and stability of nucleosomes on MMTV 3′ LTR sequences. J. Mol. Biol.(in the press).
Wasylyk, B. & Chambon, P. Transcription by eukaryotic RNA polymerases A and B of chromatin assembled in vitro. Eur. J. Biochem.98, 317–327 (1979). ArticleCAS Google Scholar
Grunstein, M. Histone function in transcription. Annu. Rev. Cell Biol.6, 643–678 (1990). ArticleCAS Google Scholar
Paranjape, S. M., Kamakaka, R. T. & Kadonaga, J. T. Role of chromatin structure in the regulation of transcription by RNA polymerase II. Annu. Rev. Biochem.63, 265–297 (1994). ArticleCAS Google Scholar
Polach, K. J. & Widom, J. Amodel for the cooperative binding of eukaryotic regulatory proteins to nucleosomal target sites. J. Mol. Biol.258, 800–812 (1996). ArticleCAS Google Scholar
Schild, C., Claret, F. X., Wahli, W. & Wolffe, A. P. Anucleosome-dependent static loop potentiates estrogen-regulated transcription from the Xenopus vitellogenin-B1 promoter in vitro. EMBO J.12, 423–433 (1993). ArticleCAS Google Scholar
Truss, M.et al. Hormone induces binding of receptors and transcription factors to a rearranged nucleosome on the MMTV promoter in vivo. EMBO J.14, 1737–1751 (1995). ArticleCAS Google Scholar
Rhodes, D., Brown, R. S. & Klug, A. Meth. Enzymol. 420–428 (Academic, San Diego, (1989). Google Scholar
Richmond, T. J., Finch, J. T., Rushton, B., Rhodes, D. & Klug, A. Structure of the nucleosome core particle at 7 Å resolution. Nature311, 532–537 (1984). ArticleADSCAS Google Scholar
Finch, J. T. et al. X-ray and electron microscope studies on the nucleosome structure. FEBS Lett.51, 193–197 (1979). Google Scholar
Arents, G., Burlingame, R. W., Wang, B.-C., Love, W. E. & Moudrianakis, E. N. The nucleosomal core histone octamer at 3.1 Å resolution: A tripartite protein assembly and a left-handed superhelix. Proc. Natl Acad. Sci. USA88, 10148–10152 (1991). ArticleADSCAS Google Scholar
Richmond, T. J., Rechsteiner, T. & Luger, K. Studies of nucleosome structure. Cold Spring Harbor Symp. Quant. Biol.LVIII, 265–272 (1993). Article Google Scholar
Richmond, T. J., Searles, M. A. & Simpson, R. T. Crystals of a nucleosome core particle containing defined sequence DNA. J. Mol. Biol.199, 161–170 (1988). ArticleCAS Google Scholar
Luger, K., Rechsteiner, T. J., Flaus, A., Waye, M. M. Y. & Richmond, T. J. Characterization of nucleosome core particles containing histone proteins made in bacteria. J. Mol. Biol.(in the press).
Camerini-Otero, R. D. & Felsenfeld, G. Sulfhydryl modificaiton of nucleosome. Proc. Natl Acad. Sci. USA74, 5519–5523 (1977). ArticleADSCAS Google Scholar
Harp, J. M. et al. X-ray diffraction analysis of crystals containing twofold symmetric nucleosome core particles. Acta Crystallogr. D52, 283–288 (1996). ArticleCAS Google Scholar
Satchwell, S. C., Drew, H. R. & Travers, A. A. Sequence periodicities in chicken nucleosome core DNA. J. Mol. Biol.191, 659–675 (1986). ArticleCAS Google Scholar
Rhodes, D. & Klug, A. Sequence-dependent helical periodicity of DNA. Nature292, 378–380 (1981). ArticleADSCAS Google Scholar
Dickerson, R. E., Goodsell, D. S. & Neidle, S. “⃛ The tyranny of the lattice⃛”. Proc. Natl Acad. Sci. USA91, 3579–3583 (1994). ArticleADSCAS Google Scholar
Travers, A. A. & Klug, A. in DNA Topology and its Biological Effects(eds Cozzarelli, N. R.&Wang, J. C.) 57–106 (Cold Spring Harbor Press, Cold Spring Harbor, New York, (1990). Google Scholar
Pryciak, P. M. & Varmus, H. E. Nucleosomes, DNA-binding proteins, and DNA sequence modulate retroviral integration target site selection. Cell69, 769–780 (1992). ArticleCAS Google Scholar
Pruss, D., Bushmann, F. D. & Wolffe, A. P. Human immunodeficiency virus integrase directs integration to sites of severe DNA distortion within the nucleosome core. Proc. Natl Acad. Sci. USA91, 5913–5917 (1994). ArticleADSCAS Google Scholar
Polach, K. J. & Widom, J. Mechanism of protein access to specific DNA sequences in chromatin: a dynamic equilibrium model for gene regulation. J. Mol. Biol.254, 130–149 (1995). ArticleCAS Google Scholar
Studitsky, V. M., Clark, D. J. & Felsenfeld, G. Overcoming a nucleosomal barrier to transcription. Cell83, 19–27 (1995). ArticleCAS Google Scholar
Hirschhorn, J. N., Brown, S. A., Clark, C. D. & Winston, F. Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes Dev.6, 2288–2298 (1992). ArticleCAS Google Scholar
Kruger, W. et al. Amino acid substitutions in the structured domains of histones H3 and H4 partially relieve the requirement of the yeast SWI/SNF complex for transcription. Genes Dev.9, 2770–2779 (1995). ArticleCAS Google Scholar
Finch, J. T. & Klug, A. Solenoidal model for superstructure in chromatin. Proc. Natl Acad. Sci. USA73, 1897–1901 (1976). ArticleADSCAS Google Scholar
Thoma, F., Koller, T. & Klug, A. Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J. Cell Biol.83, 403–427 (1979). ArticleCAS Google Scholar
Widom, J. & Klug, A. Structure of the 300 Å chromatin filament: X-ray diffraction from oriented samples. Cell43, 207–213 (1985). ArticleCAS Google Scholar
Graziano, V., Gerchman, S. E., Schneider, D. K. & Ramakrishnan, V. Histone H1 is located in the interior of the chromatin 30-nm filament. Nature368, 351–354 (1994). ArticleADSCAS Google Scholar
Hecht, A., Laroche, T., Strahl-Bolsinger, S., Gasser, S. M. & Grunstein, M. Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: A molecular model for the formation of heterochromatin in yeast. Cell80, 583–592 (1995). ArticleCAS Google Scholar
Starich, M. R., Sandman, K., Reeve, J. N. & Summers, M. F. NMR structure of HMfB from the hyperthermophile, Methanothermus fervidus, confirms that this archaeal protein is a histone. J. Mol. Biol.255, 187–203 (1996). ArticleCAS Google Scholar
Xie, X. et al. Structural similarity between TAFs and the heterotetrameric core of the histone octamer. Nature380, 316–322 (1996). ArticleADSCAS Google Scholar
Yang, T. P., Hansen, S. K., Oishi, K. K., Ryder, O. A. & Hamkalo, B. A. Characterization of a cloned repetitive DNA sequence concentrated on the human X chromosome. Proc. Natl Acad. Sci. USA79, 6593–6597 (1982). ArticleADSCAS Google Scholar
O'Halloran, T. V., Lippard, S. J., Richmond, T. J. & Klug, A. Multiple heavy-atom reagents for macromolecular X-ray structure determination. Application to the nucleosome core particle. J. Mol. Biol.194, 705–712 (1987). ArticleCAS Google Scholar
Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991). Article Google Scholar
Brünger, A. X-PLOR v3.1 Manual(Yale Univ. Press, New Haven, (1992). Google Scholar
Ferrin, T. E., Huang, C. C., Jarvis, L. E. & Langridge, R. The MIDAS display system. J. Mol. Graph.6, 13–27 (1988). ArticleCAS Google Scholar
Nicholls, A., Sharp, K. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins11, 281–296 (1991). ArticleCAS Google Scholar
Read, R. J. Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr. A42, 140–149 (1986). Article Google Scholar
Böhm, L. & Crane-Robinson, C. Proteases as structural probes for chromatin: the domain structure of histones. Biosci. Rep.4, 365–386 (1984). Article Google Scholar
Goldknopf, I. L. & Busch, H. Isopeptide linkage between nonhistone and histone 2A polypeptides of chromosomal conjugated-protein A24. Proc. Natl Acad. Sci. USA74, 864–868 (1977). ArticleADSCAS Google Scholar