GRIP: a synaptic PDZ domain-containing protein that interacts with AMPA receptors (original) (raw)

References

  1. Hollmann, M. & Heinemann, S. Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31–108 (1994).
    Article CAS Google Scholar
  2. Seeburg, P. H. The molecular biology of glutamate receptor channels. Trends Neurosci. 16, 359–365 (1993).
    Article CAS Google Scholar
  3. Nicoll, R. A. & Malenka, R. C. Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature 377, 115–118 (1995).
    Article ADS CAS Google Scholar
  4. Linden, D. J. Long-term synaptic depression in the mammalian brain. Neuron 12, 457–472 (1994).
    Article CAS Google Scholar
  5. Wo, Z. G. & Oswald, R. E. Unraveling the modular design of glutamate-gated ion channels. Trends Neurosci. 18, 161–168 (1995).
    Article CAS Google Scholar
  6. Craig, A. M., Blackstone, C. D., Huganir, R. L. & Banker, G. Selective clustering of glutamate and gamma-aminobutyric acid receptors opposite terminals releasing the corresponding neurotransmitters. Proc. Natl Acad. Sci. USA 91, 12373–12377 (1994).
    Article ADS CAS Google Scholar
  7. Froehner, S. C. Regulation of ion channel distribution at synapses. Annu. Rev. Neurosci. 16, 347–368 (1993).
    Article CAS Google Scholar
  8. Ehlers, M. D., Mammen, A., L., Lau, L.-F. & Huganir, R. L. Synaptic targeting of glutamate receptors. Curr. Opin. Cell Biol. 8, 490–495 (1996).
    Article Google Scholar
  9. Kornau, H.-C., Schenker, L. J., Kennedy, M. B. & seeburg, P. H. Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 269, 1737–1740 (1995).
    Article ADS CAS Google Scholar
  10. Kim, E., Niethammer, M., Rothschild, A., Jan, Y. N. & Sheng, M. Clustering of shaker-type K+-channels by direct interaction with the PSD-95/SAP90 family of membrane-associated guanylate kinases. Nature 378, 85–88 (1995).
    Article ADS CAS Google Scholar
  11. Cho, K.-O., Hunt, C. A. & Kennedy, M. B. The rat brain postsynaptic density fraciton contains a homolog of the Drosophila discs-large tumor suppressor protein. Neuron 9, 929–942 (1992).
    Article CAS Google Scholar
  12. Kistner, U. et al. SAP90, a rat presynaptic protein related to the product of the Drosophila tumor suppressor gene dig-A. J. Biol. Chem. 268, 4580–4583 (1993).
    CAS PubMed Google Scholar
  13. Kennedy, M. B. Origin of PDZ (DHR, GLGF) domains. Trends Biochem. Sci. 20, 350 (1995).
    Article CAS Google Scholar
  14. Ponting, C. P. & Phillips, C. DHR domains in syntrophins, neuronal NO synthases and other intracellular proteins. Trends Biol. Sci. 20, 102–103 (1995).
    Article CAS Google Scholar
  15. Kim, S. Tight junctions, membrane-associated guanylate kinases and cell signalling. Curr. Opin. Cell Biol. 7, 641–649 (1995).
    Article CAS Google Scholar
  16. Gomperts, S. N. Clustering membrane proteins: it's all coming together with the PSD-95/SAP90 protein family. Cell 84, 659–662 (1996).
    Article CAS Google Scholar
  17. Brenman, J. E. et al. Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha-1-syntrophin mediated by PDZ domains. Cell 84, 757–767 (1996).
    Article CAS Google Scholar
  18. Fields, S. & Song, O.-K. A novel genetic system to detect protein-protein interactions. Nature 340, 245–246 (1989).
    Article ADS CAS Google Scholar
  19. Chevray, P. M. & Nathans, D. N. Protein interaction cloning in yeast: identification of mammalian proteins that react with the leucine zipper of jun. Proc. Natl Acad. Sci. USA 89, 5789–5793 (1992).
    Article ADS CAS Google Scholar
  20. Stricker, N. L. et al. PDZ domain of neuronal nitric oxide synthase recognizes novel C-terminal peptide sequences. Nature Biotech. (in the press).
  21. Doyle, D. A. et al. Crystal structures of a complexed and peptide-free membrane protein-binding domain: molecular basis of peptide recognition by PDZ. Cell 85, 1067–1076 (1996).
    Article CAS Google Scholar
  22. Kohler, M., Kornau, H.-C. & Seebug, P. H. The organization of the gene for the functionally dominant α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor subunit GluR-B. J. Biol. Chem. 269, 17367–17370 (1994).
    CAS PubMed Google Scholar
  23. Gallo, V. et al. Molecular cloning and developmental analysis of a new glutamate receptor subunit isoform in cerebellum. J. Neurosci. 12, 1010–1023 (1992).
    Article CAS Google Scholar
  24. Ehlers, M. D., Tingley, W. G. & Huganir, R. L. Regulated subcellular distribution of the NRl subunit of the NMDA receptor. Science 269, 1734–1737 (1995).
  25. Muller, B. M. et al. SAP102, a novel postsynaptic protein that interacts with NMDA receptor complexes in vivo. Neuron 17, 255–265 (1996).
    Article CAS Google Scholar
  26. Liao, D., Hessler, N. A. & Malinow, R. Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocambal slice. Nature 375, 400–404 (1995).
    Article ADS CAS Google Scholar
  27. Isaac, J. T., Nicoll, R. A. & Malenka, R. C. Evidence for silent synapses: implications for the expression of LTP. Neuron 15, 427–434 (1995).
    Article CAS Google Scholar
  28. Durand, G. M., Kovalchuk, Y. & Konnerth, A. Long-term potentiation and functional synapse induction in developing hippocampus. Nature 381, 71–75 (1996).
    Article ADS CAS Google Scholar
  29. Staudinger, J., Zhou, J., Burgess, R., Elledge, S. J. & Olson, N. A perinuclear binding protein and substrate for protein kinase C isolated by the yeast two-hybrid system. J. Cell Biol. 128, 263–271 (1995).
    Article CAS Google Scholar
  30. Xia, Z., Dudek, H., Miranti, C. K. & Greenberg, M. E. Calcium influx via the NMDA receptor induces immediate early gene transcription by a MAP kinase/ERK-dependent mechanism. J. Neurosci. 16, 5424–5436 (1996).
    Article Google Scholar

Download references