Activation of prokaryotic transcription through arbitrary protein–protein contacts (original) (raw)
References
Ishihama, A. Protein-protein communication within the transcription apparatus. J. Bacteriol.175, 2483–2489 (1993). ArticleCAS Google Scholar
Ishihama, A. Role of the RNA polymerase α subunit in transcription activation. Mol. Microbiol.6, 3283–3288 (1992). ArticleCAS Google Scholar
Ebright, R. H. & Busby, S. The E. coli RNA polymerase α subunit: structure and function. Curr. Opin. Genet. Dev.5, 197–203 (1995). ArticleCAS Google Scholar
Busby, S. & Ebright, R. H. Promoter structure, promoter recognition, and transcription activation in prokaryotes. Cell79, 743–746 (1994). ArticleCAS Google Scholar
Ptashne, M. A Genetic Switch: Phage λ and Higher Organisms (Cell Press and Blackwell Scientific, Cambridge, MA, 1992). Google Scholar
Li, M., Moyle, H. & Susskind, M. M. Target of the transcriptional activation function of phage λ cI protein. Science263, 75–77 (1994). ArticleADSCAS Google Scholar
Kuldell, N. & Hochschild, A. Amino acid substitutions in the – 35 recognition motif of σ70 that result in defects in phage λ repressor-stimulated transcription. J. Bacteriol.176, 2991–2998 (1994). ArticleCAS Google Scholar
Sauer, R. T., Jordan, S. R. & Pabo, C. O. λ represser: a model system for understanding protein-DNA interactions and protein stability. Adv. Protein Chem.40, 1–61 (1990). ArticleCAS Google Scholar
Bushman, F. D., Shang, C. & Ptashne, M. A single glutamic acid residue plays a key role in the transcriptional activation function of λ represser. Cell58, 1163–1171 (1989). ArticleCAS Google Scholar
Whipple, F. W., Kuldell, N. H., Cheatham, L. A. & Hochschild, A. Specificity determinants for the interaction of λ repressor and P22 represser dimers. Genes Dev.8, 1212–1223 (1994). ArticleCAS Google Scholar
Joung, J. K., Koepp, D. & Hochschild, A. Synergistic activation of transcription by bacteriophage λ cI protein and E. coli cAMP receptor protein. Science265, 1863–1866 (1994). ArticleADSCAS Google Scholar
Hawley, D. K. & McClure, W. R. Mechanism of action of transcription inititiation from the λPRM promoter. J. Mol. Biol.157, 493–525 (1982). ArticleCAS Google Scholar
Niu, W., Kim, Y., Tau, G., Heyduk, T. & Ebright, R. H. Transcription activation at class II CAP-dependent promoters: two interactions between CAP and RNA polymerase. Cell87, 1123–1134 (1996). ArticleCAS Google Scholar
Fields, S. & Song, O. A novel genetic system to detect protein-protein interactions. Nature340, 245–246 (1989). ArticleADSCAS Google Scholar
Sauer, R. T. Molecular Characterization of the Lambda Represser and its Gene cI. PhD Thesis, Harvard Univ. (1979). Google Scholar
Monsalve, M., Mencia, M., Salas, M. & Rojo, F. Protein p4 represses phage φ29 A2c promoter by interacting with the α subunit of Bacillus subtilis RNA polymerase. Proc. Natl Acad. Sci. USA93, 8913–8919 (1996). ArticleADSCAS Google Scholar
Barberis, A. et al. Contact with a component of the polymerase II holoenzyme suffices for gene activation. Cell81, 359–368 (1995). ArticleCAS Google Scholar
Chatterjee, S. & Struhl, K. Connecting a promoter-bound protein to TBP bypasses the need for a transcriptional activation domain. Nature374, 820–822 (1995). ArticleADSCAS Google Scholar
Klages, N. & Strubin, M. Stimulation of RNA polymerase II transcription initiaiton by recruitment of TBP in vivo. Nature374, 822–823 (1995). ArticleADSCAS Google Scholar
Xiao, H., Friesen, J. D. & Lis, J. T. Recruiting TATA-binding protein to a promoter: transcriptional activation without an upstream activator. Mol. Cell. Biol.15, 5757–5761 (1995). ArticleCAS Google Scholar
Farrell, S., Simkovich, N., Wu, Y., Barberis, A. & Ptashne, M. Gene activation by recruitment of the RNA polymerase II holoenzyme. Genes Dev.10, 2359–2367 (1996). ArticleCAS Google Scholar
Koleske, A. & Young, R. A. An RNA polymerase II holoenzyme responsive to activators. Nature368, 466–469 (1994). ArticleADSCAS Google Scholar
Kim, Y. J., Bjorklund, S., Li, Y., Sayre, M. H. & Kornberg, R. D. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell77, 599–608 (1994). ArticleCAS Google Scholar
Backman, K. & Ptashne, M. Maximizing gene expression on a plasmid using recombination in vitro. Cell13, 65–71 (1978). ArticleCAS Google Scholar
Tang, H. et al. Location, structure, and function of the target of a transcription activatpr protein. Genes Dev.8, 3058–3067 (1994). ArticleCAS Google Scholar
Joung, J. K. Studies of Prokaryotic Transcriptional Activator Synergy and Dimerization Specificity. PhD Thesis, Harvard Univ. (1996). Google Scholar
Hochschild, A. & Ptashne, M. Interaction at a distance between λ repressers disrupts gene activation. Nature336, 353–357 (1988). ArticleADSCAS Google Scholar
Dove, S. L. & Dorman, C. J. The site-specific recombination system regulating expression of the type 1 fimbrial subunit gene of Escherichia coli is sensitive to changes in DNA supercoiling. Mol. Microbiol.14, 975–988 (1994). ArticleCAS Google Scholar
Joung, J. K., Le, L. U. & Hochschild, A. Synergistic activation of transcription by Escherichia coli cAMP receptor protein. Proc. Natl Acad. Sci. USA90, 3083–3087 (1993). ArticleADSCAS Google Scholar
Ross, W. et al. A third recognition element in bacterial promoters: DNA binding by the alpha subunit of RNA polymerase. Science263, 1407–1413 (1993). ArticleADS Google Scholar