Activation of prokaryotic transcription through arbitrary protein–protein contacts (original) (raw)

References

  1. Ishihama, A. Protein-protein communication within the transcription apparatus. J. Bacteriol. 175, 2483–2489 (1993).
    Article CAS Google Scholar
  2. Ishihama, A. Role of the RNA polymerase α subunit in transcription activation. Mol. Microbiol. 6, 3283–3288 (1992).
    Article CAS Google Scholar
  3. Ebright, R. H. & Busby, S. The E. coli RNA polymerase α subunit: structure and function. Curr. Opin. Genet. Dev. 5, 197–203 (1995).
    Article CAS Google Scholar
  4. Busby, S. & Ebright, R. H. Promoter structure, promoter recognition, and transcription activation in prokaryotes. Cell 79, 743–746 (1994).
    Article CAS Google Scholar
  5. Ptashne, M. A Genetic Switch: Phage λ and Higher Organisms (Cell Press and Blackwell Scientific, Cambridge, MA, 1992).
    Google Scholar
  6. Li, M., Moyle, H. & Susskind, M. M. Target of the transcriptional activation function of phage λ cI protein. Science 263, 75–77 (1994).
    Article ADS CAS Google Scholar
  7. Kuldell, N. & Hochschild, A. Amino acid substitutions in the – 35 recognition motif of σ70 that result in defects in phage λ repressor-stimulated transcription. J. Bacteriol. 176, 2991–2998 (1994).
    Article CAS Google Scholar
  8. Sauer, R. T., Jordan, S. R. & Pabo, C. O. λ represser: a model system for understanding protein-DNA interactions and protein stability. Adv. Protein Chem. 40, 1–61 (1990).
    Article CAS Google Scholar
  9. Bushman, F. D., Shang, C. & Ptashne, M. A single glutamic acid residue plays a key role in the transcriptional activation function of λ represser. Cell 58, 1163–1171 (1989).
    Article CAS Google Scholar
  10. Whipple, F. W., Kuldell, N. H., Cheatham, L. A. & Hochschild, A. Specificity determinants for the interaction of λ repressor and P22 represser dimers. Genes Dev. 8, 1212–1223 (1994).
    Article CAS Google Scholar
  11. Joung, J. K., Koepp, D. & Hochschild, A. Synergistic activation of transcription by bacteriophage λ cI protein and E. coli cAMP receptor protein. Science 265, 1863–1866 (1994).
    Article ADS CAS Google Scholar
  12. Hawley, D. K. & McClure, W. R. Mechanism of action of transcription inititiation from the λPRM promoter. J. Mol. Biol. 157, 493–525 (1982).
    Article CAS Google Scholar
  13. Niu, W., Kim, Y., Tau, G., Heyduk, T. & Ebright, R. H. Transcription activation at class II CAP-dependent promoters: two interactions between CAP and RNA polymerase. Cell 87, 1123–1134 (1996).
    Article CAS Google Scholar
  14. Fields, S. & Song, O. A novel genetic system to detect protein-protein interactions. Nature 340, 245–246 (1989).
    Article ADS CAS Google Scholar
  15. Sauer, R. T. Molecular Characterization of the Lambda Represser and its Gene cI. PhD Thesis, Harvard Univ. (1979).
    Google Scholar
  16. Monsalve, M., Mencia, M., Salas, M. & Rojo, F. Protein p4 represses phage φ29 A2c promoter by interacting with the α subunit of Bacillus subtilis RNA polymerase. Proc. Natl Acad. Sci. USA 93, 8913–8919 (1996).
    Article ADS CAS Google Scholar
  17. Barberis, A. et al. Contact with a component of the polymerase II holoenzyme suffices for gene activation. Cell 81, 359–368 (1995).
    Article CAS Google Scholar
  18. Chatterjee, S. & Struhl, K. Connecting a promoter-bound protein to TBP bypasses the need for a transcriptional activation domain. Nature 374, 820–822 (1995).
    Article ADS CAS Google Scholar
  19. Klages, N. & Strubin, M. Stimulation of RNA polymerase II transcription initiaiton by recruitment of TBP in vivo. Nature 374, 822–823 (1995).
    Article ADS CAS Google Scholar
  20. Xiao, H., Friesen, J. D. & Lis, J. T. Recruiting TATA-binding protein to a promoter: transcriptional activation without an upstream activator. Mol. Cell. Biol. 15, 5757–5761 (1995).
    Article CAS Google Scholar
  21. Farrell, S., Simkovich, N., Wu, Y., Barberis, A. & Ptashne, M. Gene activation by recruitment of the RNA polymerase II holoenzyme. Genes Dev. 10, 2359–2367 (1996).
    Article CAS Google Scholar
  22. Koleske, A. & Young, R. A. An RNA polymerase II holoenzyme responsive to activators. Nature 368, 466–469 (1994).
    Article ADS CAS Google Scholar
  23. Kim, Y. J., Bjorklund, S., Li, Y., Sayre, M. H. & Kornberg, R. D. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77, 599–608 (1994).
    Article CAS Google Scholar
  24. Backman, K. & Ptashne, M. Maximizing gene expression on a plasmid using recombination in vitro. Cell 13, 65–71 (1978).
    Article CAS Google Scholar
  25. Tang, H. et al. Location, structure, and function of the target of a transcription activatpr protein. Genes Dev. 8, 3058–3067 (1994).
    Article CAS Google Scholar
  26. Joung, J. K. Studies of Prokaryotic Transcriptional Activator Synergy and Dimerization Specificity. PhD Thesis, Harvard Univ. (1996).
    Google Scholar
  27. Hochschild, A. & Ptashne, M. Interaction at a distance between λ repressers disrupts gene activation. Nature 336, 353–357 (1988).
    Article ADS CAS Google Scholar
  28. Dove, S. L. & Dorman, C. J. The site-specific recombination system regulating expression of the type 1 fimbrial subunit gene of Escherichia coli is sensitive to changes in DNA supercoiling. Mol. Microbiol. 14, 975–988 (1994).
    Article CAS Google Scholar
  29. Joung, J. K., Le, L. U. & Hochschild, A. Synergistic activation of transcription by Escherichia coli cAMP receptor protein. Proc. Natl Acad. Sci. USA 90, 3083–3087 (1993).
    Article ADS CAS Google Scholar
  30. Ross, W. et al. A third recognition element in bacterial promoters: DNA binding by the alpha subunit of RNA polymerase. Science 263, 1407–1413 (1993).
    Article ADS Google Scholar

Download references