The role of RhoA in tissue polarity and Frizzled signalling (original) (raw)
References
Gubb, D. & Gardía-Bellido, A. A genetic analysis of the determination of cuticular polarity during development in Drosophila melanogaster. J. Embryol. Exp. Morphol.68, 37–57 (1982). CASPubMed Google Scholar
Adler, P. N. The genetic control of tissue polarity in Drosophila. BioEssays14, 735–741 (1992). ArticleCASPubMed Google Scholar
Gubb, D. Genes controlling cellular polarity in Drosophila. Development suppl.1993, 269–277 (1993). Google Scholar
Theisen, H. et al.dishevelled is required during wingless signalling to establish both cell polarity and cell identity. Development120, 347–360 (1994). CASPubMed Google Scholar
Zheng, L., Zhang, J. & Carthew, R. W. frizzled regulates mirror-symmetric pattern formation in the Drosophila eye. Development121, 3045–3055 (1995). CASPubMed Google Scholar
Vinson, C. R., Conover, S. & Adler, P. N. A Drosophila tissue polarity locus encodes as protein containing seven potential transmembrane domains. Nature338, 263–264 (1989). ArticleADSCASPubMed Google Scholar
Krasnow, R. E., Wong, L. L. & Adler, P. N. dishevelled is a component of the frizzled signalling pathway in Drosophila. Development121, 4095–4102 (1995). CASPubMed Google Scholar
Hill, C. S., Wynne, J. & Treisman, R. The Rho family GTPases RhoA, Racl, and CDC42Hs regulate transcriptional activation by SRF. Cell81, 1159–1170 (1995). ArticleCASPubMed Google Scholar
Machesky, L. M. & Hall, A. Rho: a connection between membrane receptor signalling and the cytoskeleton. Trends Cell Biol.6, 304–310 (1996). ArticleCASPubMed Google Scholar
Vojtek, A. B. & Cooper, J. A. Rho family members: activators of MAP kinase cascades. Cell82, 527–529 (1995). ArticleCASPubMed Google Scholar
Luo, L., Liao, Y. J., Jan, L. Y. & Jan, Y. N. Distinct morphogenetic functions of similar small GTPases: Drosophila Dracl is involved in axonal outgrowth and myoblast fusion. Genes Dev.8, 1787–1802 (1994). ArticleCASPubMed Google Scholar
Eaton, S., Auvinen, P., Luo, L., Jan, Y. N. & Simons, K. CDC42 and Racl control different actin-dependent processes in the Drosophila wing disc epithelium. J. Cell. Biol131, 151–164 (1995). ArticleCASPubMed Google Scholar
Harden, N., Loh, H. Y., Chia, W. & Lim, L. A dominant version of the small GTP-binding protein Rac disrupts cytoskeletal structures and inhibits developmental cells shape changes in Drosophila. Development121, 903–914 (1995). CASPubMed Google Scholar
Hariharan, I. K. et al. Characterisation of Rho GTPase family homologues in Drosophila melanogaster. overexpressing Rhol in retinal cells causes a late developmental defect. EMBO J.14, 292–302 (1995). ArticleCASPubMedPubMed Central Google Scholar
Vinson, C. R. & Adler, P. N. Directional non-cell autonomy and the transmission of polarity information by the frizzled gene of Drosophila. Nature329, 549–551 (1987). ArticleADSCASPubMed Google Scholar
Klingensmith, J., Nusse, R. & Perrimon, N. The Drosophila segment polarity gene dishevelled encodes a novel protein required for response to the wingless signal. Genes Dev.8, 118–130 (1994). ArticleCASPubMed Google Scholar
Krasnow, R. E. & Adler, P. N. A single frizzled protein has a dual role in tissue polarity Development120, 1883–1893 (1994).
Brunner, D. et al. A gain of function mutation in Drosophila MAP kinase activates multiple receptor tyrosine kinase signaling pathways. Cell76, 875–888 (1994). ArticleCASPubMed Google Scholar
Biggs, W. H. et al. The Drosophila rolled locus encodes a MAP kinase required in the sevenless signal transduction pathway. EMBO J.13, 1628–1635 (1994). ArticleCASPubMedPubMed Central Google Scholar
Riesgo-Escovar, J. R., Jenni, M., Fritz, A. & Hafen, E. The Drosophila Jun-N-terminal kinase is required for cell morphogenesis but not for DJun-dependent cell fate specification in the eye. Genes Dev.10, 2759–2768 (1996). ArticleCASPubMed Google Scholar
Sluss, H. K., Han, Z., Barrett, T., Davis, R. J. & Ip, Y. T. A JNK signal transduction pathway that mediates morphogenesis and an immune response in Drosophila. Genes Dev.10, 2745–2758 (1996). ArticleCASPubMed Google Scholar
Choi, K.-W. & Benzer, S. Rotation of photo receptor clusters in the developing Drosophila eye requires the nemo gene. Cell78, 125–136 (1994). ArticleCASPubMed Google Scholar
Bhanot, P. et al. A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature382, 225–230 (1996). ArticleADSCASPubMed Google Scholar
Xu, T. & Rubin, G. M. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development117, 1223–1237 (1993). CASPubMed Google Scholar
Vincent, J.-P., Girdham, C. H. & O'Farrell, P. H. A cell-autonomous, ubiquitous marker for the analysis of Drosophila genetic mosaics. Dev. Biol.164, 328–331 (1994). ArticleCASPubMed Google Scholar
Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development118, 401–415 (1993). CASPubMed Google Scholar
Török, T., Tick, G., Alvarado, M. & Kiss, I. P-lacW insertional mutagenesis on the second chromosome of Drosophila melanogaster: isolation of lethals with different overgrowth phenotypes. Genetics135, 71–80 (1993). PubMedPubMed Central Google Scholar
Mlodzik, M., Hiromi, Y., Weber, U., Goodman, C. S. & Rubin, G. M. The Drosophila seven-up gene, a member of the steroid receptor gene superfamily, controls photoreceptor cell fates. Cell60, 211–224 (1990). ArticleCASPubMed Google Scholar
Yanagawa, S., van Leeuwen, E.M, Wodarz, A., Klingensmith, J. & Nusse, R. The Dishevelled protein is modified by Wingless signalling Drosophila. Genes Dev.9, 1087–1097 (1995). ArticleCASPubMed Google Scholar