Mdm2 promotes the rapid degradation of p53 (original) (raw)
References
Gottlieb, T. & Oren, M. p53 in growth control and neoplasia. Biochim. Biophys. Acta1287, 77–102 (1996). PubMed Google Scholar
Shen, Y. & Shenk, T. E. Viruses and apoptosis. Curr. Opin. Gene. Dev.5, 105–111 (1995). ArticleCAS Google Scholar
Picksley, S. M. & Lane, D. P. The p53–mdm2 autoregulatory feedback loop—a paradigm for the regulation of growth control by p53? Bioessays15, 689–690 (1993). ArticleCAS Google Scholar
Chen, J. D., Lin, J. Y. & Levine, A. J. Regulation of transcription functions of the p53 tumor suppressor by the mdm-2 oncogene. Mol. Med.1, 141–142 (1995). Google Scholar
Chen, C. Y. et al. Interactions between p53 and MDM2 in a mammalian cell cycle checkpoint pathway. Proc. Natl Acad. Sc. USA91, 2684–2688 (1994). ArticleADSCAS Google Scholar
Haupt, Y., Barak, Y. & Oren, M. Cell type-specific inhibition of p53-mediated apoptosis by mdm2. EMBO J.15, 1596–1606 (1996). ArticleCAS Google Scholar
Chen, J. D., Wu, X., Lin, J. Y. & Levine, A. J. mdm-2 inhibitis the Gl arrest and apoptosis functions of the p53 tumor suppressor protein. Mol. Cell. Biol.16, 2445–2452 (1996). ArticleCAS Google Scholar
Perry, M. E., Piette, J., Zawadzki, J. A., Harvey, D. & Levine, A. J. The mdm-2 gene is induced in response to UV light in a p53-dependent manner. Proc. Natl Acad. Sci. USA90, 11623–11627(1993). ArticleADSCAS Google Scholar
Barak, Y., Gottlieb, E., Juven-Gershon, T. & Oren, M. Regulation of mdm2 expression by p53: alternative promoters produce transcripts with nonidentical translation potential. Genes Dev.8, 1739–1749 (1994). ArticleCAS Google Scholar
Lin, J. Y., Chen, J. D., Elenbaas, B. & Levine, A. J. Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev.8, 1235–1246 (1994). ArticleCAS Google Scholar
Hinds, P. W. et al. Mutant p53 DNA clones from human colon carcinomas cooperate with ras in transforming primary rat cells-a comparison of the hot spot mutant phenotype. Cell Growth Diff.1, 571–580 (1990). CASPubMed Google Scholar
Unger, T., Nau, M. M., Segal, S. & Minna, J. D. p53—a transdominant regulator of transcription whose function is ablated by mutations occurring in human cancer. EMBO J.11, 1383–1390 (1992). ArticleCAS Google Scholar
Oren, M., Reich, N. C. & Levine, A. J. Regulation of the cellular p53 tumor antigen in teratocarcinoma cells and their differentiated progeny. Mol. Cell. Biol.2, 443–449 (1982). ArticleCAS Google Scholar
Yonish-Rouach, E. et al. Induction of apoptosis by transiently transfected metabolically stable wt p53 is transformed cell lines. Cell Death Differ.1, 39–47 (1994). CASPubMed Google Scholar
Palombella, V. J., Rando, O. J., Goldberg, A. L. & Maniatis, T. The ubiquitin-proteasome pathway is required for processing the NF-κBl precursor protein and the activation of NF-κB. Cell78, 773–785 (1994). ArticleCAS Google Scholar
Maki, C. J., Huibregtse, J. M. & Howley, P. M. In vivo ubiquitination and proteasome-mediated degradation of p53. Cancer Res.56, 2649–2654 (1996). CASPubMed Google Scholar
Kubbutat, M. H. & Vousden, K. H. Proteolytic cleavage of human p53 by calpain: a potential regulator of protein stability. Mol. Cell. Biol.17, 460–468 (1997). ArticleCAS Google Scholar
Gottlieb, E., Lindner, S. & Oren, M. Relationship of sequence-specific transactivation and p53-regulated apoptosis in interleukin 3-dependent hematopoietic cells. Cell Growth Diff.7, 301–310 (1996). CASPubMed Google Scholar
Lane, D. P. The regulation of p53 function: Steiner award lecture. Int. J. Cancer57, 623–627 (1994). ArticleCAS Google Scholar
Bartek, J., Iggo, R., Gannon, J. & Lane, D. P. Genetic and immunochemical analysis of mutant p53 in human breast cancer cell lines. Oncogene5, 893–899 (1990). CASPubMed Google Scholar
Martin, K. et al. Stimulation of E2F1/DP1 transcriptional activity by MDM2 oncoprotein. Nature575, 691–694 (1995). ArticleADS Google Scholar
Xiao, Z. X. et al. Interaction between the retinoblastoma protein and the oncoprotein Mdm2. Nature375,694–698 (1995). ArticleADSCAS Google Scholar
Momand, J. & Zambetti, G. P. Analysis of the proportion of p53 bound to mdm-2 in cells with defined growth characteristics. Oncogene12, 2279–2289 (1996). CASPubMed Google Scholar
Kastan, M. B., Onyekwere, O., Sindransky, D., Vogelstein, B. & Craig, R. W. Participation of p53 protein in the cellular response to DNA damage. Cancer Res.51, 6304–6311 (1991). CAS Google Scholar
Fiscella, M. et al. Mutation of the serine 15 phosphorylation site of human p53 reduces the ability of p53 to inhibit cell cycle progression. Oncogene8, 1519–1528 (1993). CASPubMed Google Scholar
Scheffner, M., Huibregtse, J. M., Vierstra, R. D. & Howley, P. M. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell75, 495–505 (1993). ArticleCAS Google Scholar
Otto, A. & Deppert, W. Upregulation of mdm-2 expression in Meth A tumor cells tolerating wild-type p53. Oncogene8, 2591–2603 (1993). CASPubMed Google Scholar
Jones, S. N., Roe, A. E., Donehower, L. A. & Bradley, A. Rescue of embryonic lethality in mdm2-deficient mice by absence of p53. Nature378, 206–208 (1995). ArticleADSCAS Google Scholar
Monies de Oca Luna, R., Wagner, D. S. & Lozano, G. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature378, 203–206 (1995). ArticleADS Google Scholar