Regulation of serotonin-2C receptor G-protein coupling by RNA editing (original) (raw)

References

  1. Hoyer, D. et al. IUP classification of receptors for 5-hydroxytryptamine (serotonin). Pharrnacol. Rev. 46, 157–203 (1994).
    CAS Google Scholar
  2. Polson, A. G., Bass, B. L. & Casey, J. L. RNA editing of hepatitis delta virus antigenome by dsRNA-adenosine deaminase. Nature 380, 454–456 (1996).
    Article ADS CAS Google Scholar
  3. Sommer, B., Kohler, M., Sprengel, R. & Seeburg, P. H. RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 67, 11–19 (1991).
    Article CAS Google Scholar
  4. Lomeli, H. et al. Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science 266, 1709–1713 (1994).
    Article ADS CAS Google Scholar
  5. Kohler, M., Burnashev, N., Sakmann, B. & Seeburg, P. Determinants of Ca2+ permeabiity in both TM1 and TM2 of high affinity kainate receptor channels: diversity by RNA editing. Neuron 10, 491–500 (1993).
    Article CAS Google Scholar
  6. Egebjerg, J. & Heinemann, S. F. Intron sequence directs RNA editing of the glutamate receptor subunit GluR2 coding sequence. Proc. Natl Acad. Sci. USA 90, 755–759 (1993).
    Article ADS CAS Google Scholar
  7. Zuker, M. Computer prediciton of RNA structure. Meth. Enzymol. 180, 262–288 (1989).
    Article CAS Google Scholar
  8. Higuchi, M. et al. RNA editing of AMPA receptor subunit GluR-B: a base-paired intron-exon structure determines positon and efficiency. Cell 75, 1361–1370 (1993).
    Article CAS Google Scholar
  9. Herb, A., Higuchi, M., Sprengel, R. & Seeburg, P. H. Q/R site editing in kainate receptor GluRS and GluR6 pre-mRNAs requires distant intronic sequences. Proc. Natl Acad. Sci. USA 93, 1875–1880 (1996).
    Article ADS CAS Google Scholar
  10. Rueter, S. et al. Glutamate receptor RNA editing in vitro by enzymatic conversion of adenosine to inosine. Science 267, 1491–1494 (1995).
    Article ADS CAS Google Scholar
  11. Yang, J.H., Sklar, P., Axel, R. & Maniatis, T. Editing of glutamate receptor subunit B pre-mRNA in vitro by site-specific deamination of adenosine. Nature 374, 77–81 (1995).
    Article ADS CAS Google Scholar
  12. Maas, S. et al. Structural requirements for RNA editing in glutamate receptor pre-mRNAs by recombinant double-stranded RNA adenosine deaminase. J. Biol. Chem. 271, 12221–12226 (1996).
    Article CAS Google Scholar
  13. Melcher, T. et al. A mammalian RNA editing enzyme. Nature 379, 460–464 (1996).
    Article ADS CAS Google Scholar
  14. Bass, B. RNA editing: New uses for old players in the RNA world. The RNA World 383–418 (Cold Spring Harbor Laboratory Press, New York, 1993).
    Google Scholar
  15. Gomeza, J. et al. The second intracellular loop of metabotropic glutamate receptor 1 cooperates with the other intracellular domains to control coupling to G-proteins. J. Biol. Chem. 271, 2199–2205 (1996).
    Article CAS Google Scholar
  16. Westphal, R. S., Backstrom, J. R. & Sanders-Bush, E. Increased basal phosphorylation of the constitutively active serotonin 2C receptor accompanies agonist-mediated desensitization. Mol. Pharmacol. 48, 200–205 (1995).
    CAS PubMed Google Scholar
  17. Ariëns, E. J., Beld, A. J., Rodrigues de Miranda, J. F. & Simonis, A. M. The Receptors 33–91 (Plenum, New York, 1979).
    Google Scholar
  18. Meller, E. et al. Receptor reserve for D2 dopaminergic inhibition of prolactin release in vivo and in vitro. J. Pharmacol. Exp. Ther. 257, 668–675 (1991).
    CAS PubMed Google Scholar
  19. Leonhardt, S., Garospe, E.,, Hoffman, B. J. & Teitler, M. Molecular pharmacological differences in the interaction of serotonin with 5-hydroxytryptamine 1C and 5-hydroxytryptamine2 receptors. Mol. Pharmacol. 42, 328–335 (1992).
    CAS PubMed Google Scholar
  20. Ross, E. M. G protein GTPase-activating proteins: regulation of speed, amplitude, and signaling selectivity. Rec. Prog. Harm. Res. 50, 207–221 (1995).
    CAS Google Scholar
  21. Moro, O., Lameh, J., Högger, P. & Sadée, W. Hydrophobic amino acid in the 12 loop plays a key role in receptor-G protein coupling. J. Biol. Chem. 268, 22273–22276 (1993).
    CAS PubMed Google Scholar
  22. Yu, L. et al. The mouse 5-HT1C receptor contains eight hydrophobic domains and is X-linked. Mol. Brain Res. 11, 143–149 (1991).
    Article CAS Google Scholar
  23. Kennelly, P. J. & Krebs, E. G. Consensus sequences as substrate specificity determinants for protein kinases and protein phosphatases. J. Biol. Chem. 266, 15555–15558 (1991).
    CAS Google Scholar
  24. Julius, D., MacDermott, A. B., Axel, R. & Jessell, T. M. Molecular characterization of a functional cDNA encoding the serotonin Ic receptor. Science 241, 558–264 (1988).
    Article ADS CAS Google Scholar
  25. Ausubel, F. et al. (eds) Current Protocols in Molecular Biology (Wiley, New York, 1989).
  26. O'Connell, M. et al. Cloning of cDNAs encoding mammalian double-stranded RNA-specific adenosine deaminase. Mol. Cell Biol. 15, 1389–1397 (1995).
    Article CAS Google Scholar
  27. Gorski, K., Carneiro, M. & Schibler, U. Tissue-specific in vitro transcription from the mouse albumin promoter. Cell 47, 767–776 (1986).
    Article CAS Google Scholar
  28. Barker, E. L., Westphal, R. S., Schmidt, D. & Sanders-Bush, E. Constitutively active 5-hydroxytrypta-mine2C receptors reveal novel inverse agonist activity of receptor ligands. J. Biol Chem. 269, 11687–11690 (1994).
    CAS PubMed Google Scholar
  29. Westphal, R. S. & Sanders-Bush, E. Reciprocal binding properties of 5-hydroxytryptamine type 2C receptor agonists and inverse agonists. Mol. Pharmacol. 46, 937–942 (1994).
    CAS PubMed Google Scholar
  30. Cheng, Y. & Prusoff, W. H. Relationship between the inhibiton constant (_K_i) and the concentration of inhibitor which causes 50 per cent inhibition (IC50) of enzymatic reaction. Biochem. Pharmacol. 22, 3099–3108 (1973).
    Article CAS Google Scholar

Download references