Elasticity and unfolding of single molecules of the giant muscle protein titin (original) (raw)

References

  1. Trinick, J. Cytoskeleton: titin as a scaffold and spring. Curr. Biol. 6, 258–260 (1996).
    Article CAS Google Scholar
  2. Maruyama, K. Connectin, an elastic protein of striated muscle. Biophys. Chem. 50, 73–85 (1994).
    Article CAS Google Scholar
  3. Labeit, S. & Kolmerer, B. Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 270, 293–296 (1995).
    Article ADS CAS Google Scholar
  4. Linke, W. A. et al. Towards a molecular understanding of the elasticity of titin. J. Mol. Biol. 261, 62–71 (1996).
    Article CAS Google Scholar
  5. Gautel, M. & Goulding, D. A molecular map of titin/connectin elasticity reveals two different mechanisms acting in series. FEBS Lett. 385, 11–14 (1996).
    Article CAS Google Scholar
  6. Higuchi, H., Nakauchi, Y., Maruyama, K. & Fujime, S. Characterization of α-connectin from striated muscle by dynamic light scattering. Biophys. J. 65, 1906–1915 (1993).
    Article ADS CAS Google Scholar
  7. Wang, K., McCarter, R., Wright, J., Beverly, J. & Ramirez-Mitchell, R. Viscoelasticity of the sarcomere matrix of skeletal-muscles: the titin-myosin composite filament is a dual-stage molecular spring. Biophys. J. 64, 1161–1177 (1993).
    Article CAS Google Scholar
  8. Soteriou, A., Clarke, A., Martin, S. & Trinick, J. Titin folding energy and elasticity. Proc. R. Soc. Land. B 254, 83–86 (1993).
    Article ADS CAS Google Scholar
  9. Erickson, H. P. Reversible unfolding of fibronectin type-III and immunoglobulin domains provides the structural basis for stretch and elasticity of titin and fibronectin. Proc. Natl Acad. Sci. USA 91, 10114–10118 (1994).
    Article ADS CAS Google Scholar
  10. Politou, A. S., Thomas, D. J. & Pastore, A. The folding and stability of titin immunoglobulin-like modules, with implications for the mechanism of elasticity. Biophys. J. 69, 2601–2610 (1995).
    Article ADS CAS Google Scholar
  11. Flory, P. J. in Statistical Mechanics of Chain Molecules 316–304 (Hanser, Munich, 1989).
    Google Scholar
  12. Fixman, M. & Kovac, J. Polymer conformational statistics. III. Modified Gaussian models of stiff chains. J. Chem. Phys. 56, 1564–1568 (1973).
    Article ADS Google Scholar
  13. Kellermayer, M. S. Z. & Granzier, H. L. Elastic properties of single titin molecules made visible through fluorescent F-actin binding. Biochem. Biophys. Res. Comm. 221, 491–497 (1996).
    Article CAS Google Scholar
  14. Linke, W. A., Bartoo, M. I., Ivemeyer, M. & Pollack, G. H. Limits of titin extension in single cardiac myofibrils. J. Muscle Res. Cell Motil. 17, 425–438 (1996).
    Article CAS Google Scholar
  15. Politou, A. S., Gautel, M., Pfuhl, M., Labeit, S. & Pastore, A. Immunoglobulin-type domains of titin: same fold, different stability? Biochemistry 33, 4730–4737 (1994).
    Article CAS Google Scholar
  16. Fong, S. et al. Structure and stability of an immunoglobulin superfamily domain from twitchin, a muscle protein of the nematode Caenorhabditis elegans. J. Mol. Biol. 264, 624–639 (1996).
    Article CAS Google Scholar
  17. Litvinovich, S. V., Novokhatny, V. V., Brew, S. A. & Ingram, K. C. Reversible unfolding of an isolated heparin and DNA binding fragment, the first type III module from fibronectin. Biochim. Biophys. Acta 1119, 57–62 (1992).
    Article CAS Google Scholar
  18. Plaxco, K. W., Spitzfaden, C., Campbell, I. D. & Dobson, C. M. Rapid refolding of a proline-rich all-beta-sheet fibronectin type-Ill module. Proc. Natl Acad. Sci. USA 93, 10703–10706 (1996).
    Article ADS CAS Google Scholar
  19. Soteriou, A., Gamage, M. & Trinick, J. A survey of the interactions made by the giant protein titin. J. Cell Sci. 104, 119–123 (1993).
    CAS PubMed Google Scholar
  20. Whiting, J., Wardale, J. & Trinick, J. Does titin regulate the length of muscle thick filaments. J. Mol. Biol. 205, 263–268 (1989).
    Article CAS Google Scholar
  21. Fürst, D. O., Osborn, M., Nave, R. & Weber, K. The organisation of titin filaments in the half-sarcomere revealed by monoclonal-antibodies in immunoelectron microscopy: a map of ten nonrepetitive epitopes starting at the Z-line extends close to the M-line. J. Cell Biol. 106, 1563–1572 (1988).
    Article Google Scholar
  22. Simmons, R. M., Finer, J. T,, Chu, S. & Spudich, J. A. Quantitative measurements of force and displacement using an optical trap. Biophys. J. 70, 1813–1822 (1996).
    Article ADS CAS Google Scholar
  23. Bustamante, C. Entropic elasticity of λ-phage DNA. Science 265, 1599–1600 (1994).
    Article ADS CAS Google Scholar
  24. Tskhovrebova, L. & Trinick, J. Direct visualization of extensibility in isolated titin molecules. J. Mol. Biol. 265, 100–106 (1997).
    Article CAS Google Scholar
  25. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M. & Gaub, H. E. Reversible unfolding of individual titin Ig-domains by AFM. Science (in the press).
  26. Kellermayer, M. S. Z., Smith, S. B., Granzier, H. L. & Bustamante, C. Folding-unfolding transitions in single titin molecules characterized with force-measuring laser tweezers. Science (in the press).

Download references