The exocytotic event in chromaffin cells revealed by patch amperometry (original) (raw)
References
Breckenridge, L. J. & Almers, W. Currents through the fusion pore that forms during exocytosis of a secretory vesicle. Nature328, 814–817 (1987). ArticleADSCAS Google Scholar
Spruce, A. E., Breckneridge, L. J., Lee, A. K. & Almers, W. Properties of the fusion pore that forms during exocytosis of a mast cell secretory vesicles. Neuron4, 643–654 (1990). ArticleCAS Google Scholar
Lollike, K., Borregaard, N. & Lindau, M. The exocytotic fusion pore of small granules has a conductance similar to an ion channel. J. Cell Biol.129, 99–104 (1995). ArticleCAS Google Scholar
Almers, W. & Tse, F. W. Transmitter release from synapses: Does a preassembled fusion pore initiate exocytosis? Neuron4, 813–818 (1990). ArticleCAS Google Scholar
Neher, E. & Marty, A. Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc. Natl Acad. Sci. USA79, 6712–6716 (1982). ArticleADSCAS Google Scholar
Wightman, R. M. et al. Temporally resolved catecholamine spikes correspond to single vesicle release for individual chromaffin cells. Proc. Natl Acad. Sci. USA88, 10754–10758 (1991). ArticleADSCAS Google Scholar
Chow, R. H., Rüden, L. v. & Neher, E. Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells. Nature356, 60–63 (1992). ArticleADSCAS Google Scholar
Gillis, K. D., Mößner, R. & Neher, E. Protein kinase C enhances exocytosis from chromaffin cells by increasing the size of the readily releasable pool of secretory granules. Neuron16, 1209–1220 (1996). ArticleCAS Google Scholar
Chen, B.-M. & Grinell, A. D. Integrins and modulation of transmitter release from motor nerve terminals by stretch. Science269, 1578–1580 (1995). ArticleADSCAS Google Scholar
Chen, B.-M. & Grinell, A. D. Kinetics, Ca2+dependence, and biophysical properties of integrin-mediated mechanical modulation of transmitter release from frog motor nerve terminals. J. Neurosci.17, 904–916 (1997). ArticleCAS Google Scholar
Moser, T., Chow, R. H. & Neher, E. Swelling-induced catecholamine secretion recorded from single chomaffin cells. Pflügers Arch. Eur. J. Physiol.431, 196–203 (1995). ArticleCAS Google Scholar
Chow, R. H., Klingauf, J., Heinemann, C., Zucker, R. S. & Neher, E. Mechanisms determining the time course of secretion in neuroendocrine cells. Neuron16, 369–376 (1996). ArticleCAS Google Scholar
Breckenridge, L. J. & Almers, W. Final steps in exocytosis observed in a cell with giant secretory granules. Proc. Natl Acad. Sci. USA84, 1945–1949 (1987). ArticleADSCAS Google Scholar
Zimmerberg, J., Curran, M., Cohen, F. S. & Brodwick, M. Simultaneous electrical and optical measurements show that membrane fusion precedes secretory granule swelling during exocytosis of beige mouse mast cells. Proc. Natl Acad. Sci. USA84, 1585–1589 (1987). ArticleADSCAS Google Scholar
Walker, A., Glavinovic, M. I. & Trifaró, J.-M. Temperature dependence of release of vesicular content in bovine chromaffin cells. Pflügers Arch. Eur. J. Physiol.432, 885–892 (1996). ArticleCAS Google Scholar
Jankowski, J. A., Schroeder, T. J., Cioklowski, E. L. & Wightman, R. M. Temporal characteristics of quantal secretion of catecholamines from adrenal medullary cels. J. Biol. Chem.268, 14694–14700 (1993). CASPubMed Google Scholar
Zhou, Z., Misler, S. & Chow, R. H. Rapid fluctuations in transmitter release from single vesicles in bovine adrenal chromaffin cells. Biophys. J.70, 1543–1552 (1996). ArticleADSCAS Google Scholar
Baur, J. E., Kristensen, E. W., May, L. J., Wiedemann, D. J. & Wightman, R. J. Fast-scan voltammetry of biogenic amines. Annal. Chem.60, 1268–1272 (1988). ArticleCAS Google Scholar
Walker, A., Glavinovic, M. I. & Trifaró, J.-M. Time course of release of content of single vesicles in bovine chromaffin cells. Pflügers Arch. Eur. J. Physiol.431, 729–735 (1996). ArticleCAS Google Scholar
Wightman, R. M., Schroeder, T. J., Finnegan, J. M., Ciolkowski, E. L. & Pihel, K. Time course of release of catecholamines from individual vesicles during exocytosis at adrenal medullary cells. Biophys. J.68, 383–390 (1995). ArticleADSCAS Google Scholar
Chow, R. H. & Rüden, L. v. in Single Channel Recording (eds Sakmann, B. & Neher, E.) 245–275 (Plenum, New York, (1995)). Book Google Scholar
Alvarez de Toledo, G., Fernández-Chacón, R. & Fernandez, J. M. Release of secretory products during transient vesicle fusion. Nature363, 554–558 (1993). ArticleADSCAS Google Scholar
Rahamimoff, R. & Fernandez, J. M. Pre- and postfusion regulation of transmitter release. Neuron18, 17–27 (1997). ArticleCAS Google Scholar
Bruns, D. & Jahn, R. Real-time measurement of transmitter release for single synaptic vesicles. Nature377, 62–65 (1997). ArticleADS Google Scholar
Gasnier, B., Scherman, D. & Henry, J.-P. Inactivation of the catecholamine transporter during the preparation of chromaffin granule ‘ghosts’. FEBS Lett.222, 215–219 (1987). ArticleCAS Google Scholar
Scherman, D. & Boschi, G. Time required for transmitter accumulation inside monoaminergic storage vesicles differs in peripheral and central systems. Neuroscience27, 1029–1035 (1988). ArticleCAS Google Scholar
Phillips, J. H. Dynamic aspects of chromaffin granule structure. Neuroscience7, 1595–1609 (1982). ArticleCAS Google Scholar
Parsons, T. D., Coorssen, J. R., Horstmann, H. & Almers, W. Docked granules, the exocytic burst, and the need for ATP hydrolysis in endocrine cells. Neurons15, 1085–1096 (1995). ArticleCAS Google Scholar
Bach, G. in Quantitative Methoden der Morphologie (eds Weibel, E. R. & Elias, H.) 23–45 (Springer, Berlin, (1967). Book Google Scholar