Circadian oscillation of a mammalian homologue of the Drosophila period gene (original) (raw)

References

  1. Edmunds, L. N. J. Cellular and Molecular Basis of Biological Clocks (Springer, New York, (1988)).
    Google Scholar
  2. Konopka, R. J. & Benzer, S. Clock mutants of Drosophila melanogaster. Proc. Natl Acad. Sci. USA 68, 2112–2116 (1971).
    Article ADS CAS Google Scholar
  3. Hardin, P. E., Hall, J. C. & Rosbash, M. Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature 343, 536–540 (1990).
    Article ADS CAS Google Scholar
  4. Zerr, D. M., Hall, J. C., Rosbash, M. & Siwicki, K. K. Circadian fluctuations of period protein immunoreactivity in the NS and the visual system of Drosophila. J. Neurosci. 10, 2749–2762 (1990).
    Article CAS Google Scholar
  5. Moore, R. Y. & Eichler, V. B. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res. 42, 201–216 (1972).
    Article CAS Google Scholar
  6. Stephen, F. K. & Zucker, I. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc. Natl Acad. Sci. USA 69, 1583–1586 (1972).
    Article ADS Google Scholar
  7. King, D. P. et al. Positional cloning of the mouse circadian Clock gene. Cell 89, 641–653 (1997).
    Article CAS Google Scholar
  8. Antoch, M. P. et al. Functional identification of the mouse circadian Clock gene by transgenic BAC rescue. Cell 89, 655–667 (1997).
    Article CAS Google Scholar
  9. Baylies, M. K., Bargiello, T. A., Jackson, F. R. & Young, M. W. Changes in abundance of structure of the per gene product can alter periodicity of the Drosophila clock. Nature 326, 390–392 (1987).
    Article ADS CAS Google Scholar
  10. Saez, L. & Young, M. W. Regulation of nuclear entry of the Drosophila clock proteins Period and Timeless. Neuron 17, 911–920 (1996).
    Article CAS Google Scholar
  11. Citri, Y. et al. Afamily of unusually spliced biologically active transcripts encoded by a Drosophila clock gene. Nature 326, 42–47 (1987).
    Article ADS CAS Google Scholar
  12. Vosshall, L. B., Price, J. L., Sehgal, A., Saez, L. & Young, M. W. Block in nuclear localization of period protein by a second clock mutation, timeless. Science 263, 1606–1609 (1996).
    Article ADS Google Scholar
  13. Huang, Z. J., Curtin, K. D. & Rosbash, M. PER protein interactions and temperature compensation of a circadian clock in Drosophila. Science 267, 1169–1172 (1995).
    Article ADS CAS Google Scholar
  14. Wheeler, D. A. et al. Molecular transfer of a species-specific behavior from Drosophila simulans and Drosophila melanogaster. Science 251, 1082–1085 (1991).
    Article ADS CAS Google Scholar
  15. Colot, H. V., Hall, J. C. & Rosbash, M. Interspecific comparison of the period gene of Drosophila reveals large blocks of non-conserved coding DNA. EMBO J. 7, 3929–3937 (1988).
    Article CAS Google Scholar
  16. Reppert, S. M., Tsai, T., Roca, A. L. & Sauman, I. Cloning of a structural and functional homolog of the circadian clock gene period from the giant silkmoth Antheraea pernyi. Neuron 13, 1167–1176 (1994).
    Article CAS Google Scholar
  17. Liu, X., Lorenz, L., Yu, Q., Hall, J. C. & Rosbash, M. Spatial and temporal expression of the period gene in Drosophila melanogaster. Genes Dev. 2, 228–238 (1988).
    Article CAS Google Scholar
  18. Saez, L. & Young, M. W. In situ localization of the per clock protein during development of Drosophila melanogaster. Mol. Cell. Biol. 8, 5378–5385 (1988).
    Article CAS Google Scholar
  19. Inouye, S.-T. & Kawamura, H. Persistence of circadian rhythmicity in a hypothalamic ‘island’ containing the suprachiasmatic nucleus. Proc. Natl Acad. Sci. USA 76, 5962–5966 (1979).
    Article ADS CAS Google Scholar
  20. Schwarts, W. J. & Gainer, H. Suprachiasmatic nucleus: use of 14C-labeled deoxyglucose uptake as a functional marker. Science 197, 1089–1092 (1977).
    Article ADS Google Scholar
  21. Gillette, M. U. & Reppert, S. M. The hypothalamic suprachiasmatic nuclei: circadian patterns of vasopressin secretion and neuronal activity in vitro. Brain Res. Bull. 19, 135–139 (1987).
    Article CAS Google Scholar
  22. Vitaterna, M. H. et al. Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264, 719–725 (1994).
    Article ADS CAS Google Scholar
  23. Ralph, M. R. & Menaker, M. Amutation of the circadian system in golden hamsters. Science 241, 1225–1227 (1988).
    Article ADS CAS Google Scholar
  24. Ito, T., Hohjoh, H. & Sakaki, Y. Pulse-field polyacrylamide gel electrophoresis: basic phenomena and applications. Electrophoresis 14, 278–282 (1993).
    Article CAS Google Scholar
  25. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning (Cold Spring Harbor Laboratory Press, NY, (1989)).
    Google Scholar
  26. Church, G. M. & Gilbert, W. Genomic sequencing. Proc. Natl Acad. Sci. USA 81, 1991–1995 (1984).
    Article ADS CAS Google Scholar
  27. Ban, Y., Shigeyoshi, Y. & Okamura, H. Development of circadian VIP rhythm in the rat suprachiasmatic nucleus. J. Neurosci. 17, 3920–3931 (1997).
    Article CAS Google Scholar

Download references